Object-Oriented

Programming
With C++ |

2nd edition

N

.8

David Parsons

David Parsons has lectured in both further and higher-education, and is currently a senior
lecturer in the Systems Engineering faculty at Southampton Institute. He has a BA from the
University of Sussex, a Certificate in Education from Garnett College (London) and an
MPhil from the University of Southampton, faculty of Engineering and Applied Science.
His current research interest is in enhancing the extensibility of object-oriented systems,
particularly in the area of schematic capture for electronic circuit design.

Letts Educational
Aldine Place
London W12 8AW
0181 740 2266

Acknowledgements

Many people have had an influence on the second edition of this book, but some deserve
special mention. I would particularly like to thank my colleagues Mark Cranshaw, Rob
Callan and Tan Court with whom I have taught many courses on object-orientation and
C++. Their insight and experience has been invaluable. I am also grateful to Tom
Kazmierski for his consistent support for my research. Thanks are also due to the
hundreds of students who have endured my lectures and the thousands(!) who bought
the first edition of the book. I would also like to thank the many people who provided
constructive comments on the first edition, either directly or via the publisher's
questionnaire. I have tried to take as many of your comments into account as possible in
preparing this edition. Finally, I would like to thank my wife and daughters: Di, Jenny,
Katie and Abbie, who (almost) prevent me from going insane.

David Parsons

Email: parsons_d@solent.ac.uk
home page: http:/ / www.solent.ac.uk/syseng/sef9027.html

A CIP catalogue record for this book is available from the British Library

ISBN 1 85805 232 7
Copyright D. Parsons © 1997

First edition 1994
Second edition 1997

All rights reserved

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior permission of the copyright owner.

Typeset by Elizabeth Bennett, St Albans, Herts

Printed in Great Britain by
Ashford Colour Press, Gosport

Contents

O 0 N o U o

10
11
12
13
14
15

16
17
18

Preface
What is object-orientation?
What is C++?

Getting to grips with C++
Part 1 Data types, operators, functions and I/ O

Part2 Arrays, strings, pointers and control structures
Modelling the real world

Classes and objects

Object lifetimes and dynamic objects
The metaclass

Inheritance and classification hierarchies
Associations and aggregations

An example program

Introduction to polymorphism

Operator overloading

Polymorphism by parameter

Method polymorphism

Run-time polymorphism

Container classes
Part1 Container types, data structures and simple containers

Part2 Heterogenous containers and template classes
Multiple inheritance
Persistent objects, streams and files

Object-oriented analysis and design
Case study: a UML design

Appendix: answers to exercises
Glossary
Bibliography

Index

iv

13

20
36

52
65
77
99
110
133
161
177
186
203
215
229

244
266

284
310

333
342

360
382
383
387

Preface

Background

Now that the various aspects of object technology are firmly in the mainstream of
computing, the principles and practices of object-orientation have become increasingly
important to students on university and college computing courses. Object-oriented
languages such as C++ and Java have found wide popularity in the workplace, and new
methodologies such as the Unified Modelling Language (UML) have been developed to
encompass object-oriented design and analysis. As higher education courses adapt to
the changing technology, more and more students are finding the need for a simple
introductory text to object-oriented concepts, programming, analysis and design.

Aim

The aim of this book is to demystify the rather forbidding terminology used in object-
orientation, and to present each aspect of the approach in a simple form, using C++ as
the example language. The guiding principle is that concepts can only be learned by
practical ‘hands on” experience.

Need

Most texts on object-orientation tend to fall into one of three camps.

1. Books about programming in a particular language, or a particular company’s
version of a language, with the emphasis on syntax. The underlying concepts of
object-orientation are often relegated to a few paragraphs.

2. Purely conceptual texts, extremely complex for the beginner to grasp with no
concrete coding examples.

3. Books specifically tied to a particular design or analysis methodology, and therefore,
whilst in many cases including good general introductions, they tend to contain
much information inappropriate to a more general understanding.

In many cases, complex terms are interpreted differently by different authors, and there

is little entry level material available for the student.

Approach

This book assumes that the reader has a practical knowledge of the basic principles of
computer programming, though not in any particular language. Experience in
traditional procedural languages such as BASIC or Pascal should stand the reader in
good stead. A simple subset of standard C++ as described by its inventor Bjarne
Stroustrup in his book ‘The C++ Programming Language’ [Stroustrup, 1995] is used for
the examples in the book, and no syntax is used without explanation. The intention is
that all examples should be easily assimilable and lead to working programs as soon as
possible. They should also be portable across the various C++ compilers with little or no
modification.

Each chapter deals with a particular aspect of object-orientation, firstly dealing with the
general concepts and terms, and then demonstrating them separately with simple
examples in C-++. The intention is that the text can be used as a reference for the concepts

Preface

alone, but can also be used as a learning tool for object-oriented programming in C++.
Object-oriented programming skills are developed incrementally, building on what has
gone before.

In-text questions (with answers) enable the reader to stop and reflect, and at the end of

most chapters there are programming exercises; some have answers provided at the
back of the book.

Overview

The book begins with chapters on the background to object orientation and C++,
outlining their development. Bjarne Stroustrup has this advice about books on object-
orientation: “My rule is: look to see if there is a history section, and look to see if there is a lot of
hype about object-oriented programming at the beginning; and if there’s no history and there’s
object-oriented hype - don't touch it!” [Stroustrup in Watts, 1992 p.36]. In Chapter 1, there is
some history and just a little object-oriented hype!

This is followed by a basic introduction to the syntax of C++ (including data types,
operators, selections, loops, functions and simple I/ O syntax). It is not intended that this
should provide an in-depth knowledge of C++, but simply that it should provide a basic
level of knowledge appropriate to understanding the examples used in the book and
tackling the initial programming exercises. In the following chapters, object-oriented
concepts such as classes, objects, inheritance and polymorphism are introduced in the
context of previous material. Later chapters cover relatively advanced topics such as
building container classes, multiple inheritance, object persistence and approaches to
object-oriented analysis and design.

Organisation

The book is organised so that the material can be delivered in discrete units in one
semester (or supplemented with other material for longer courses if required). Most
chapters are appropriate to one week’s lecture and workshop material, though some
shorter semantically related chapters can be combined. For a 15 week semester, the
following gives a good balance of material:

Week no. Chapter Material Covered

1 1,2 Introductory object-orientation/C++
2 3 C/C++ syntax

3 4 Classes

4 5 Objects

b 6 Object lifetimes

6 7 Metaclass

7 8 Inheritance

8 9 Association and aggregation

9 10, 11 Introductory polymorphism/operator overloading
10 12 Parametric polymorphism

11 13, 14 Polymorphic methods

12 15 Container classes

13 16 Multiple inheritance

14 17 Persistent objects, files and streams
15 18 Analysis and design

Preface

A mid-semester assignment may be given around week eight, when enough of the
fundamental concepts have been covered to produce a reasonably object-oriented
program. An example program is provided after chapter nine to give some idea of the
kind of application that might be appropriate, and to give students a frame of reference.

Experience suggests that being able to teach a full fifteen weeks in a semester is often
impossible where a period for exams is required. In these circumstances, more specialist
areas such as some aspects of polymorphism, multiple inheritance and analysis and
design can be left out, perhaps as directed learning for the students to pursue
individually.

Resources available on the internet

The source code for all the example programs in the book, along with those exercises that
have answers provided in the appendix is available from the Letts Educational website
at:

http:/ / www.lettsed.co.uk/ parsons.htm
Other complementary materials will also be made available via this site as they become
available. '

Lecturers’ supplement

vi

A supplement is provided free of charge to lecturers recommending the book as a course
text, including suggested answers to those exercises not included in the appendix. A
diskette is also available containing both the files from the website and those from the
lecturers’ supplement. Application should be made to the publishers on departmental
headed notepaper.

Dave Parsons
May 1997

1 What is object-orientation?

Overview

In this chapter, we look at what is meant by the term ‘object’, and how it reflects our
natural view of the world. The general characteristics of the object-oriented approach are
described, and some key terms are introduced. The development of object-orientation is
traced through previous developments in languages and methodologies, and the object-
oriented and procedural programming paradigms are compared. Finally, some current
issues in object technology are discussed.

Objects in software

The field of object-orientation (or ‘object technology” as it is often called) is a large and
growing one, and what it entails can to some extent depend on the context. For example,
the facilities of the programming languages vary widely; some languages are more
‘object-oriented’ than others. Generally, however, object-orientation is about trying to
represent the ‘objects’ that we find in the real world (or at least that part of it which our
programs address) in software. These ‘objects’ may be of various types, ranging from the
physical (aircraft in an air traffic control application for example) to the more conceptual
(some sort of container for other objects perhaps).

Shlaer and Mellor [1988, pp.15-16] in their object-oriented analysis method identify five
types of objects:

1. Tangible Things Physical objects, e.g. ‘car’, ‘bar code reader’

2. Roles Of people or organisations, e.g. ‘account holder’, ‘employer’

3. Incidents Something happening at a particular time, e.g. ‘flight’, ‘transaction’
4. Interactions A link between objects, e.g. ‘electrical connection’, ‘contract’

5. Specifications A definition of a set of other objects, e.g. a description of a partic-

ular type of stock item

While this is only one approach to analysis, clearly some objects are more ‘real’ (in the
sense of physically existing in the real world) than others! A more general distinction in
terms of object-oriented programming is made by Stroustrup [1995, p.402] when he
identifies two kinds of object:

1. Those that directly represent the ideas used to describe the application.

2. Those that are ‘artifacts of the implementation’ — objects used as programming tools
to implement the code.

We may make a distinction then between objects that are part of an application such as
banks, petrol pumps and customers, and others that are programming tools such as data
structures (stacks, queues etc.) which allow us to implement the application objects.

What is an object?

Having said object-orientation is about representing ‘objects’ in software, we must ask
ourselves two questions:

1 What is object-orientation?

1. What is an object?
2. Why use objects in programs?

We may answer the first question by saying that, in essence, objects are the elements
through which we perceive the world around us. We naturally see our environment as
being composed of ‘things’ which have recognisable identities and particular behav-
iours. All objects have these characteristics of identity (what we call an object) and
behaviour (what an object does) which enable us to recognise them as discrete things.
They also exhibit ‘state’, which means that we can describe what an object is, as well as
what it does and what it is called. Another key element in the object-oriented model is
that objects can be classified into types, again a natural response to our environment. It is
instinctive to classify individual objects according to their common characteristics; we
recognise for example that all cats are of a single ‘type’. Although we may also identify
individual differences between specific cats, our perception is that all individual cats
belong to a general ‘class’ which we call ‘Cat’. We "know about’ all cats because we
recognise what they have in common.

We are also able to recognise that some objects are composed of other objects, or contain
other objects. A ‘house’ object is composed of other objects such as bricks, windows,
doors, tiles etc. A shopping trolley full of groceries is an object in its own right and a
container of other objects. All these human responses to the world are elements of the
object-oriented approach.

The basic philosophy of using objects in programs is a simple one — that the world is
composed of interacting, classifiable and identifiable objects, and therefore programs,
too, can usefully be structured in this way. Since all software applications serve people
living in the real world, then that software should mirror the real world as closely as
possible, both in its workings and in its underlying design. Simply, object-oriented
programming is a more ‘natural” way to program.

Question 1.1 Is an object a concrete ‘thing’?

Some objects in software represent concrete things in the real world (though they are not themselves concrete).
Other objects are more abstract, and do not represent ‘things’ which can be fouched or seen.

Object = (private) data + (public) processes

What is perhaps most important (and different) about the object-oriented approach to
software is that it unifies inside ‘objects’ two things that have traditionally been sepa-
rated in programming paradigms:

1. Data
2. Processes

The linking of these two aspects of programming is known as ‘encapsulation’, and
allows the implementation of ‘information hiding’ — restricted access to the internal
representations of objects. Objects have a ‘private’ part of hidden internal detail (state
data and internal processes), and a ‘public’ interface which clearly defines the set of
possible behaviours of the object (the messages to which it can respond). This separation
of the public interface of an object and its internal implementation allows us to treat the
two as separate parts of the programming process. An object’s private implementation
details can be defined without reference to other objects or a particular application

1 What is object-orientation?

context, and then the object may be used in an application that utilises only the object’s
public interface.

Both the public and private part of an object are defined in an ‘abstract data type’ which
defines the common aspects of all objects in a particular ‘class’, i.e. objects that we clas-
sify as one type.

Relating to existing paradigms

Although object-orientation gives us new tools and a new approach to software, it is an
evolutionary rather than a revolutionary approach. The following sections discuss the
development of approaches to software engineering and the many parallels between this
and other paradigms.

Functional and data decomposition

All large programming projects have to be ‘partitioned’ in some way if they are to be
managed at all, since there has to be some way of allocating programmer tasks and
assembling their work into a cohesive unit. Before the coming of object-oriented
methods, serious programs had been generally developed using one of two general
approaches, or ‘structured methods’ (these are encompassed by several different
methodologies).

1. Process Driven (Functional Decomposition)
2. Data Driven (Data Decomposition)

In functional (or “algorithmic’) decomposition, a programming problem is ‘decomposed’
into constituent processes, each of which should be a coherent and simple module. The
structure of the data which these modules process is a secondary consideration, meaning
that data tends to be generally spread across a system with little logical organisation.

In the data driven approach, sets of data are used to design the program, so that the
internal structures of data are used to organise the processes that take place. Here, we
may find large amounts of data being processed in a way dictated by an arbitrary file or
database structure that may be used in many different applications. The fixed structures
of global data held in files or tables tend to cause difficulties when a particular process
does not easily match the existing data structures.

Both of the above approaches have their disadvantages, and some of the problems that
arise when using them are because they are both computer-oriented paradigms — one
based on the organisation of computer processes, the other based on the organisation of
data files. When either of these is applied to a real situation (which tend to be rather less
clear cut than computer systems) there can be a lack of connectivity between reality and
the attempted solution.

Question 1.2 Structured methods are used to decompose programming problems. Why is
this necessary, and what may be used to drive the decomposition?

Programming problems of any size must be decomposed fo be successfully managed, particularly for large teams
of programmers. There are two approaches to decomposition in structured methods, which may be either data
driven or process driven.

1 What is object-orientation?

The ‘software crisis’ and the ‘silver bullet’

The process and data driven approaches to structured methods were, in part, responses
to the ‘Software Crisis’, a term coined in 1968 by the NATO Software Engineering
Conference which maintained that contemporary software production methods were
inadequate for the developing needs of the defence and data processing industries.
Subsequent methodologies were an attempt to find the ‘silver bullet’ that would over-
come the software crisis. The term ‘silver bullet’ comes from a 1986 article by Fred
Brooks comparing software projects with werewolves — ‘because they transform unex-
pectedly from the familiar into horrors’ [Brooks, 1986 p.10]. Werewolves, as Hollywood
teaches, can be killed by silver bullets.

If software implementation had been successful in the decades since 1968, then there
would be no need to look for new approaches. However, there is still plenty of evidence
to suggest that many software projects still come in over time, over budget and under
specification, despite the proliferation of analysis and design methods. We are all
familiar with traditional engineering projects which cost much more than they were
supposed to, are completed late and are substandard, but the sheer degree to which this
happens in software engineering suggests an even more serious problem.

Code re-use versus code salvage

One primary reason for the problems of software production has been that, despite good
intentions, it is very difficult to reuse code generated from traditional approaches. As Ed
Yourdon, an influential author on both structured and object-oriented techniques, says,
‘Reusability is, of course, a Boy Scout virtue like loyalty, thrift, and bravery, but no-one is
quite sure how to practice it’ [Yourdon, 1990 p. 258]. However general a module of func-
tionally decomposed code might appear to be, it tends to be either too implementation
specific to reuse, or too general to be of use in a different specific context. Instead of code
reuse, only code salvage (dismantling and reconstructing) seems possible using existing
techniques, unless the module’s function is very trivial. The non proximity between
processes and data in traditional systems means that processing modules are over
dependent on external data stores.

In contrast, the modular unit in object-orientation (the “abstract data type’, which
provides the blueprint for objects of a specific type) encapsulates both data and process.
Because abstract data types hide their internal information behind a consistent ‘public’
interface, they can be easily ported from one application to another. These units therefore
provide the reusability absent from other methods in that not only can they be used in
many applications without modification, but they can also be extended, without
corrupting what already exists. Once we have true reusability, we have the tools for the
‘Software Industrial Revolution” [Cox, 1990 p.210], by which the assembly of software
from prefabricated components becomes as easy and commonplace as it is for traditional
engineering.

True modularity through object-orientation

Object-orientation is not so much a radical new approach as an evolutionary develop-
ment in the maturation of software engineering. Many ideals that have been sought in
functional (and data) decomposition can be achieved via object-orientation. What in

1 What is object-orientation?

essence it provides is true ‘modularity’, in which software modules (objects) provide the
ultimate in:

1. Low (data) Coupling Coupling is the extent to which different modules rely
on one another and/or external data in order to
function.

2. High (functional) Cohesion ~ Cohesion is the extent to which a programming module
makes sense as an entity.

A module which exhibits “low coupling’ is not tied to a particular environment in order
to function. The external interface of an object is clearly defined in terms of the opera-
tions that object can undergo, and any external inputs that affect the object’s behaviour.
Its coupling to other objects is through flexible ‘message passing’ mechanisms, and it is
only the uses of these message passing mechanisms that will tend to vary widely
between applications. Therefore an object is easily ‘decoupled’ from a particular applica-
tion and ‘coupled’ to another.

Cohesion is to some extent a matter of semantics - what the ‘meaning’ of a particular
module is. A ‘highly cohesive’ module is therefore one that has a clearly defined role.
The ideal type of cohesion in functional decomposition is ‘functional cohesion’, by which
a module performs one problem-related task. Object-orientation can go further than this
and encapsulate together functions related to data representations of real world objects.
The semantics of a module then becomes the same as the semantics of the real world — if
we can understand something as an object in reality, then we can model it as a cohesive
module in software. Not all objects have ‘real world” parallels, but ‘computational
objects” such as stacks, queues and lists exhibit the same characteristics of modularity as
cars, stereos and dogs, since their role in an application is defined by their external
behaviours, not by their internal workings.

Benefits of modularity

Because object-orientation provides modularity, it also provides the generally assumed
benefits of modularity, namely:

1. Reusability Programs can be assembled from pre-written software components
that can be used in many different applications.

2. Extensibility ~ New software components can be written or developed from existing
ones without affecting the original components.

Meyer (the creator of the ‘Eiffel” object-oriented programming language) gives five

criteria for modularity [Meyer, 1988]. These criteria may be applied to any type of

system, but are difficult to achieve using functional decomposition:

1. Decomposability ~ Breaking a system down into manageable units

2. Composability Modules may be freely combined into other systems

3. Understandability Understanding the part contributes to understanding the whole

4. Continuity Small changes to the system imply small changes to behaviour

5. Protection Exception and error conditions are confined to the module in

which they occur, or affect only closely related modules

All these criteria are met in an object-oriented system by virtue of objects reflecting
semantically cohesive units with simple interfaces, hiding their internal implementation.

5

1 What is object-orientation?

In summary, modularity is easier to achieve using object-oriented techniques, and it is
therefore easier to take full advantage of its benefits.

Question 1.3 What differentiates a ‘module’ from an ‘object’@

A module is a ‘functionally decomposed’ piece of code which performs a particular process or set of processes.
An object is a unit of software comprising both data and process which provides some meaningful behaviour.

Areas of object technology
The general field of object technology can be seen as falling into four areas of application:
1. Object-Oriented Programming (OOP)
2. Object-Oriented Design (OOD)
3. Object-Oriented Analysis (OOA)
4. Object-Oriented Databases (OODBs)

All these necessarily interact in some way, particularly object-oriented analysis and
design — many methodologies have been proposed, but we can see common elements
between them. Object-oriented databases are a very important field because traditional
forms of data storage do not sit easily with the object-oriented approach, and more
appropriate and flexible ways of storing objects on disk need to be used. While this book
introduces object-orientation primarily as a programming methodology, later chapters
introduce the areas of object-oriented analysis, design and databases.

A brief history of object-orientation

There have been a number of milestones on the road to object-orientation, both theoret-
ical developments and language implementations. The following table shows some of
the most important:

1968: Simula67 — the first object-oriented language

1972: David Parnas’ seminal paper on ‘Information Hiding’

1970s: Graphical User Interfaces (GUIs) developed using object-
orientation

1980: First version of Smalltalk

1983: First version of C++

1988: First version of Eiffel

1990s: Object Oriented Analysis and Design methods

1995: First version of Java

Although there has been a claim that the designers of the ‘Minuteman’ missile used rudi-
mentary object-oriented techniques as early as 1957 [Graham 1992 p.2], the ‘birth” of
object-orientation came in 1968 with Simula67 — the first object-oriented language, and
an extremely influential one. One only has to consider that the key personalities behind
three of the major object-oriented languages — Bjarne Stroustrup (C++), Alan Kay
(Smalltalk) and Bertrand Meyer (Eiffel) — all had backgrounds in Simula to realise its
influence. Simula was developed in Norway as a discrete event simulation language,

1 What is object-orientation?

and was the first language to introduce the key object-oriented concepts of classes and
inheritance.

Many people have been influential in developing the theoretical basis of object-orienta-
tion, but perhaps the most influential single paper was published by David Parnas, who
introduced the idea of ‘information hiding’. Parnas’ principle was that a programming
module should ‘reveal as little as possible about its inner workings’ [Parnas, 1972 p.147].
This basic idea is crucial to the way that objects hide their internal implementations
behind a public interface.

Throughout the 1970s and 1980s, a great deal of development using object-oriented tech-
niques went on at various research centres. At Xerox PARC (Palo Alto Research Centre),
Smalltalk was developed, an object-oriented language that comes with its own WIMP
(Windows, Icons, Menus and Pointers) interface. Its interface style in particular has had
a strong influence on the subsequent growth in the development of GUIs (Graphical
User Interfaces) for many applications. Other languages also appeared in the 1980s,
notably C++ (a "hybrid’ language based on C with object-oriented extensions) and Eiffel
(like Smalltalk, a ‘pure’ OO language). In the early 1990s object oriented analysis and
design methods proliferated, and in 1995 Java became the language of choice for
programming on the Internet.

Clearly, object-orientation has had a long development path, which has taken off only in
recent years partly because the programming languages are very demanding on hard-
ware resources. Another reason for its recent growth has been the popularity of the GUI,
which has become the norm for all types of applications. Since the user interface has
become increasingly more sophisticated, the advantages of the object-oriented approach,
particularly in terms of reuse, have seen it become the standard method for coding GUIs.
Other areas that have grown in importance in recent years are those of concurrency and
rapid prototyping, both of which can benefit from the object-oriented approach. Design
methodologies such as the ‘Unified Modelling Language’ [Rumbaugh, Booch and
Jacobsen, 1997] provide us with tools for designing concurrent systems using objects,
while languages such as C++ and Java allow multithreaded programs. In the area of
rapid prototyping, the modular nature of an object-oriented program means rapid reuse
and modification without compromising robustness or reliability. This is particularly
useful in applications where there are new and unknown problems to be solved - it is
possible to test various approaches quickly and efficiently when we can easily assemble
and disassemble software objects in prototype systems. In addition, the fields of object-
orientation and knowledge based systems seem likely to grow closer together as they
increasingly find common theoretical and practical ground [Harmon, 1990].

Basic terminology and ideas

The various aspects of object-orientation will be covered in detail throughout the book,
but the three key features of the object-oriented approach are often quoted as:

1. Abstraction /encapsulation
2. Inheritance
3. Polymorphism

1 What is object-orientation?

Abstraction/encapsulation

Abstraction is the representation of all the essential features of an object, which means its
possible states and behaviours. These are ‘encapsulated’ into an ‘abstract data type’
which defines how all objects in a class (type) of objects are to be represented and how
they behave. '

Encapsulation is the practice of including in an object everything it needs, (both data and
processes) hidden from other objects in the system. The internal state of an object is not
directly accessible from outside, and cannot be altered by external changes to the appli-
cation. Similarly, changes to the internal implementation details can be made without
affecting the external interface.

Inheritance

Inheritance means that one class inherits the characteristics of another class as part of its
definition. Inheritance is appropriate when one class is “a kind of” other class (e.g. Ais a
kind of B - ‘text window’ is a kind of ‘window’). These types of hierarchies are funda-
mental to object-oriented programming. Some classes may inherit from more than one
other class, and this is known as ‘multiple inheritance’.

A “classification hierarchy’ shows the inheritance relationships between classes, based
on the similarities between different classes of objects. Inheritance has two complemen-
tary roles:

1. To allow a class to be extended so that its existing functionality can be built on for
new applications.

2. To allow similar objects to share their common properties and allowed behaviours.

Polymorphism

Polymorphism means ‘having many forms’, and there are many forms of polymor-
phism! The general description of polymorphism is that it allows different objects to
respond to the same message in different ways, the response specific to the type of
object. This is achieved by various types of ‘overloading’ — allowing a symbol (an oper-
ator like ‘+’, or a function name like ‘show’) to have more than one meaning depending
on the context in which it is used. Polymorphism is particularly important when object-
oriented programs are dynamically creating and destroying objects in a classification
hierarchy at run time, so that it is not possible when compiling to predict the number or
classes of objects which will receive messages when the program is running. We there-
fore have to defer decisions about the meaning of a particular symbol until run-time, a
practice known as ‘dynamic binding”. ‘Run-time’ polymorphism of this kind is one of
the most useful aspects of object-oriented programming.

These three main ideas (encapsulation, inheritance and polymorphism) tend to build on
each other, so that once we have encapsulation, then we can build classification
hierarchies of inheritance, and from these we can really begin to use the power of
polymorphism.

Aggregation

In addition to the three concepts mentioned above (which apply to classes) there are also
‘aggregation’ relationships (which apply to objects). These apply when objects of one

1 What is object-orientation?

class are composed (at least partially) of objects of another class (e.g. A is a part of B —
‘engine’ is a part of ‘car’). Aggregations of this kind are more flexible than inheritance
because they can be more readily reorganised. Objects which contain other objects (but
are not composed of them) are also forms of aggregation.

Behaviour and message passing

The most important aspect of an object is its behaviour: ‘by their ways shall ye know
them’ [Graham, 1991 p.9]. The behaviours of an object (the things it can do) are initiated
by sending the object a ‘message’. In practice, an object-oriented program is a set of
objects sending messages to each other and responding accordingly via their ‘methods’
(also called ‘operations’ or ‘services’). A ‘method’ is the mechanism by which an object
can receive and process a particular message. The set of messages to which an object can
respond via its methods is sometimes called its ‘protocol’.

Question 1.4 Reuse is said to be a ‘boy scout virtue’. In what ways can the various
aspects of object-orientation described above contribute to reuse?

There are various confexts in which reuse is possible: Encapsulation allows us to reuse an abstract data type to
create multiple objects, and inheritance allows classes to be reused in the definition of other classes.
Polymorphism means the reuse of symbols {operators and names) to apply to different object behaviours, while
aggregation reuses exisling classes to provide components for larger objects.

Object based, class based and object-oriented

Because there is some separation between the different object-oriented concepts, we find
some languages have more facilities than others for object-orientation, and some texts
make a distinction between three types of programming, depending on the facilities
available:

1. Object based
2. Class based
3. Object-oriented

Object based programming involves some aspects of encapsulation inside ‘objects’,
which can be created from a specified set of existing classes, but does not provide mech-
anisms for creating new classes. Class based programming includes facilities for creating
classes, but these classes cannot be organised into a classification hierarchy in order to
implement inheritance (or, therefore, full polymorphism). However, the semantic differ-
ences between these two types need not further concern us here. The key point is that a
truly object-oriented language has all the facilities for encapsulation, inheritance and
polymorphism.

It is in fact possible to make many distinctions between the facilities of different object-
oriented languages, and to say that one is more or less object-oriented than another.
Wegner [1989, p.249] identifies no less than six ‘language classes’ with different levels of
‘object-orientedness” but, by most standards, C++ provides all the crucial elements for
applying the object-oriented paradigm.

e

1 What is object-orientation?

Object-oriented programming

There are in essence two elements to object-oriented programming
1. Making Classes: Creating, extending or reusing abstract data types

2. Making Objects Interact: Creating objects from abstract data types and defining their
relationships over time

The key to reusability in object-orientation is that when we come to a new application,
we do not begin by reinventing the wheel, but by looking to see if we can reuse any
existing abstract data types in our new program. Some may be reusable directly. Others
may need to be extended by using inheritance to add extra functionality. Others again
may need to be created from scratch. ‘Domain analysis’ is a term used to mean (among
other things) looking at an application area and identifying commonality between the
new application and existing applications of a similar type. Common abstract data types
can then be identified for reuse or extension.

Once all the abstract data types are identified or coded, then the program can be created
by making and destroying objects and defining the messages that are passed between
them over time.

The way in which a program is approached will depend partly on the language used. In
C++ we can use as much or as little of the object-oriented facilities on offer as we like. In
a wholly object-oriented language there is no such option. The intention of this book is to
take as much of an object-oriented approach as possible, given the constraints of
working with a hybrid language.

Comparing approaches

10

What similarities can we identify between the types of programming elements we know
from procedural programming, and what we have in an object-oriented program? As the
following table shows, there are several aspects that can be equated [adapted from
Wirth, 1990 p.13].

Procedural Object-oriented
Data type Abstract data type/Class
Variable Object/Instance

Function/procedure ~ Method/Operation/Service

Function calls Message passing

All the aspects of the procedural paradigm may also be present in an object-oriented
program to a greater or lesser degree, but object-orientation provides extensions to the
facilities we already have. As well as existing data types, we can define our own “abstract
data types’ which describe all objects of a class. In addition to variables of simple data
types, we can create instances of our abstract data types, called ‘objects’. Instead of func-
tions and procedures existing apart from data and other procedures, they become part of
particular object classes — encapsulated inside abstract data types (where they are known
as ‘operations’, ‘methods’ or ‘services’), and their calling mechanism is known as
‘message passing’, since objects communicate with each other by calling each others’
methods via ‘messages’. The internal workings of an object are no different in many
ways to the internal workings of a module in a procedural program, so many skills

1 What is object-orientation?

learned using other programming paradigms can be usefully employed in object-
oriented programming.

Question 1.5 A traditional procedural program might be implemented by first writing and
testing a series of modules, and then linking them all together into an overall
system using function calls o manage the various modules. How is an object-
orienfed program implemented?

Like a procedural program, the components of an objectoriented system are built and tested first, and then
integrated. In the case of objectorientation, however, it is not modules which are built but classes, and objects of
these classes are created and fested. Finally, the objects are combined info a system which allows the objects to
pass messages o one another.

Object technology: present and future

Object technology has established itself as the leading paradigm for component based
programming (particularly for Graphical User Interfaces) and programming for the
Internet, using Java. It has also made major inroads into more general applications
development. Object-oriented languages, methodologies and software tools have devel-
oped a large user base, such that object technology is now very much part of the main-
stream of software engineering.

However, there are a number of areas where object technology still has much scope for
development. These include:

1. Object persistence

An object’s natural environment is in RAM as a dynamic entity. This is in contrast to
traditional data storage in files or databases where the natural environment of the
data is on external storage. This poses a challenge when we want objects to persist
between runs of a program, even more so between different applications, perhaps
widely distributed. Development of object-oriented databases has had to compro-
mise in many cases, because of substantial past investment in, and support for,
existing relational databases.

2. Reusability

The engineering of reusable software components has been proven at the level of
programming components such as Graphical User Interface libraries and Container
Class libraries. However, the development of larger scale reusable ‘business objects’
is a more difficult task and has much scope for development. Reusability of non-code
components has attracted much interest, for example, the reusable ‘design patterns’
of Gamma, Helm, Johnson and Vlissides [Gamma et al, 1995].

3. Distributed systems

Because objects tie data and process together, designing object-oriented distributed
systems raises questions about where the objects reside and how their distribution is
managed. Initiatives such as the Object Management Group’s Common Object
Request Broker Architecture (CORBA) have attempted to standardise distributed
object protocols, while the platform independent nature of Java has demonstrated
the power of distributed ‘Applets’.

1 What is object-orientation?

The way ahead for object technology remains full of challenges, but as the technology
matures and develops, it becomes more and more pervasive in all aspects of
computing, to the point where it will become impossible to ignore. As Ed Yourdon says:

“No turning back. Object-orientation is the future, and the future is here and now.’
[Yourdon, 1990 p.263]

Summary of key points from this chapter

1.

10.

11.

The object-oriented approach reflects our natural perceptions of the world as being
composed of objects, classifiable into general types.

Objects comprise private data and public processes.

‘Structured methods’ were developed as a response to the ‘software crisis’.
Object-orientation effectively addresses many of the same problems encountered by
structured methods.

Object-orientation enhances modularity and reusability.

Object technology encompasses the fields of analysis, design, programming and
databases.

Object-orientation dates from the development of Simula in 1968, but has become
established primarily due to the popularity of GUIs.

The key ideas are abstraction (encapsulation), inheritance and polymorphism.
Object-oriented programming is a two stage process, first identifying and creating
classes, and secondly creating objects of these classes and defining the messages that
pass between them over time.

Some aspects of procedural programming have near parallels in object-orientation,
and many of the same techniques can be applied.

Challenges for object technology include object persistence, reusability, and distrib-
uted systems.

2 What is C+4+?

Overview

In this chapter, the history and development of C++ is explained in the context of a
number of other languages which had an influence on it, principally C and Simula 67.
The way in which C++ programs are composed of functions (including library func-
tions) is introduced, and the C++ philosophy is compared to that of ‘purer’ object-
oriented languages such as Smalltalk, Eiffel and Java.

C++, a beHer C?

C++ has been called ‘a better C’, but that is not the whole story. C++ is not the next
version of Cbut a separate language which has been developed using C as the basis for
its syntax. C++ in fact has an interesting history, which does begin in some senses with
the development of C in the early 1970s, but has other roots too. The * genealogy’ of C++
is shown in Fig. 2.1.

CPL
Algol 60
BCPL

Simula 1

B
Algol 68

Simula 67

C
CH++

Fig. 2.1: The languages from which C++ has been developed

C, Unix, BCPL and B

The story of C begins back in 1968 when two Bell Laboratories programmers (Ken
Thompson and Dennis Ritchie) were developing an operating system written in assem-
bler on a DEC PDP-7 computer. This was the birth of the first version of the now widely
used Unix operating system. In order for Unix to be more easily portable to other
computers, it was necessary to replace the assembler with a higher level language, since
assembly languages are very much tied to particular processors. The first non assembler
Unix language was called ‘B’, (with a virtual memory version called ‘vb’) and based on a
1967 British computer language called BCPL (Basic CPL), itself based on an earlier
language called CPL (Combined Programming Language) developed by Oxford and

13

2 What is C++2

Cambridge Universities (1962-7). However, since B was interpreted rather than
compiled, its performance was inadequate for Unix and it became a tool for writing an
assembler for the more powerful PDP-11 to which Unix development was transferred in
1970. One of the key characteristics of BCPL and B is that they are ‘typeless’ languages.
Instead of dealing with a range of data types, they only address a ‘machine word’. In
order to improve the execution speed of B, Ritchie produced a compiler which was able
to deal with types, overcoming inefficiencies caused by the ‘typelessness’ of B which
meant complex operations identifying machine addresses: C was born! Unix was
rewritten in C in 1973 and the rest, as they say, is history.

Because C was developed as a tool for driving an operating system, it had certain char-
acteristics such as speed, compactness and some very low level elements (C is in some
senses a high level assembly language). This made it popular with programmers for
many applications which had nothing to do with Unix, and it became widely used,
although an ANSI standard for C was not completed until 1990. The definitive C text is
‘“The C Programming Language’ by Brian Kernighan & Dennis Ritchie [Kernighan &
Ritchie, 1988], but you don’t need to know any C to read this book.

Question 2.1 What differentiates the data representation facilities of C from its predeces-
sors BCPL and B?

BCPL and B are ‘typeless’ languages, which means they are only able to address ‘machine words’ of memory. In
contrast, C includes the ability to define different data types with different storage representations.

Simula 67

14

Whilst C made a major contribution to the syntax of C++, the Norwegian language
‘Simula’ is equally important for its contribution of object-oriented concepts. Simula was
the first ever object-oriented language, developed during the 1960’s by Kristen Nygaard
and Ole Dahl as an extension of Algol 60 (ALGOrithmic Oriented Language — an early
competitor of Fortran and incidentally the first language to be formally defined using
BNF - Backus Naur Form — not that this need concern us here!). Their philosophy of a
computer language included some key aspects of object-orientation:

1. Dynamic instances of program elements (Objects)
2. The linking of data and operations (Encapsulated Classes)

3. Similarities between processes (involving both data and actions) should not need to
be repeated (Inheritance)

4. Dynamic memory management to remove dynamic instances which are no longer
needed (this last concept borrowed from LISP).

The first (early 1960s) version of Simula was Simula I, but the final definition of the
Janguage was delivered in May 1968 (though it had already been optimistically chris-
tened Simula 67!). Simula 67 gave us the crucial object-oriented concepts of classes,
dynamic objects, encapsulation and inheritance which will be investigated in detail in
subsequent chapters. Simula was primarily developed as a tool for simulation (hence its
name, though it seems to have also reverse engineered its own acronym — ‘SIMple
Universal LAnguage’), and this remains one of the most appropriate application areas
for object-oriented techniques.

2 What is C++2

C++

C++ was developed by Bjarne Stroustrup in 1983 (version 1.0 became commercially
available in 1985, version 2 in 1989 and version 3 in 1992) at the AT&T Bell laboratories,
and is basically a superset of C, though there are one or two inconsistencies. Stroustrup
became interested in the object-oriented approach whilst studying for his PhD at
Cambridge University, using Simula 67 to write a distributed systems simulator.
However, he had major problems with the resources required by the simulator, and had
to write the final version in (interestingly enough) BCPL. In the light of this rather diffi-
cult experience, Stroustrup decided that a proper programming tool was needed for
complex projects and that such a tool should:

1. Help with complexity (use classes)

2. Ensure correctness (have strong type checking)

3. Be affordable in terms of hardware and resources

4. Be open - easy and cheap to integrate existing software libraries and facilities
5. Be portable

The language he developed was first called ‘C with classes’ (in 1980) and later C++. The
name derives from the ‘increment’ operator in C, which is ‘++'. The effect of the incre-
ment operator is to add one to the operand (C++ means something like C plus 1).
Therefore the name suggests that C++ is an incremental development of C — an extension
to the existing syntax - as opposed to a separate language. In fact Stroustrup suggests
another root for the name; ‘Newspeak’ (the language of English Socialism) in George
Orwell’s novel “1984’. Two quotations may help to elucidate this. Firstly, one which
refers to the third vocabulary of Newspeak, the ‘C’ vocabulary (the others are the ‘A’ and
‘B’ vocabularies, for everyday and political usage respectively — all 3 vocabularies are
tightly defined and unambiguous).

‘The C vocabulary was supplementary to the others and consisted entirely of scientific
and technical terms’ [Orwell, 1949 p. 322]

The second refers to the meaning of ‘doubleplus’:

‘any word ... could be strengthened by the affix plus~, or, for still greater emphasis,
doubleplus—’ [Orwell, 1949 p. 315]

C++ derives directly from C in terms of its syntax, but also owes much in terms of its
facilities to Simula 67 and also Algol 68 (a considerable extension of Algol 60).

Stroustrup used C as the basis for his new language because, despite feeling that some
aspects of C were problematical, it was good enough as a computational language, and it
would enable existing C tools to be used in its development. No doubt another crucial
factor was that he was working at AT&T Bell, the home of C, and had access to the
C compiler and associated software. Also, since this was a commercial rather than acad-
emic project, it was not practicable to built a new language entirely from scratch. C’s
deficiencies ‘are in the area of program organisation and support for good design and
programming — those then became my areas of work’ [Stroustrup in Smith, 1989 p-13].
The combination of C’s low level programming power and run-time efficiency, plus the
higher level constructs added with C++, mean that C++ is able to span a wide spectrum
of programming applications. Despite the fact that C++ was developed ‘on the cheap’, it
has proved extremely successful, with many former C applications migrating to it.

15

2 What is C++2

Indeed some future development in the Unix operating system may well be developed
in C++ rather than C. The ANSI standard C++ is based on Stroustrup’s book ‘The C++
Programming Language’. The most recent (1995) edition includes a number of resolu-
tions of the ANSI committee.

C++ is in many ways a ‘better C’, and is primarily important for its addition of object-
orientation. C++ can be used to write procedural code just like C, but its real value lies in
the ability to write object-oriented programs. In this sense itis a hybrid language, able to
produce both traditional procedural and object-oriented programs, or pretty much
anything in between. From this point of view it is useful as a tool for an incremental
approach to object-oriented programming.

C code can be written in such a way as to be virtually unintelligible, even to the
programmer who wrote it. This rather unfortunate characteristic is also evident in C++,
but it does have a number of improved syntax elements which make it easier to read and
write whether or not the object-oriented facilities are used, and clarity of code is largely
dependent on common sense. There is not much real gain in writing on one line what
can be written much more lucidly on three.

C++ has come in for a lot of criticism from object-orientation ‘purists’ (such as Bertrand
Meyer [Watts (2), 1992]) who regard its hybrid approach as clumsy and inadequate.
However, Stroustrup counters such criticisms by stressing that it is a practical approach,
allowing flexibility for working programmers to learn the concepts incrementally if
necessary without losing all the power and efficiency of C code. He is quoted as saying
‘It is not right to be pure. It is right to serve your own and others’ needs. Diversity of
approaches has been shown to work. There’s not just one right way, and anyway 1 have
a problem with the word ‘pure’, because it makes me think of Stormtroopers.’
[Stroustrup, in Watts (1), 1992].

Question 2.2 What is the relationship between C and C++¢

C++ is a development of C, providing an additional set of objectoriented facilities on top of the existing syntax.

C++ keywords and functions

A keyword is a word which the compiler recognises as being part of the language’s built
in syntax. A function is a set of source code which is defined by a name:. That name is not
a keyword since it is not part of the compiler’s instruction set.

C++ has a small set of keywords (about 60, depending on version and implementation)
and some of those are not used very much (the dreaded ‘goto’ for example!). Compare
this, for example, to COBOL with its vast and ever growing collection of reserved words.
C++ achieves its power not just through a fixed set of keyword syntax but through
extensibility; the facility for a programmer to extend the language with ease. Most parts
of a C++ program rely on the use of ‘library functions’ which are external to the compiler
itself. These library functions are in effect C++ source code which is available to the
programmer to incorporate into his / her own programs. It is possible to continuously
build on existing functions to create code at a higher and higher level, so that apparently
very simple programs can be written, calling functions (or in the case of object-oriented
programs, creating objects) that do all the serious work invisibly behind the scenes.
Indeed, it is very much part of the philosophy of the object-oriented approach that the

2 What is C++2

implementation details of an object in a program are not seen, only its external behav-
iour. A well written object-oriented program should be extremely easy to follow, even if
the underlying code which defines a library object’s behaviour is very complex indeed.
Although there are only a few library functions defined as part of the standard language,
the vendors who provide particular implementations of the C++ compiler tend to
provide large function libraries for a wide range of applications including graphics,
hardware-specific functions and screen interface designs, among many others. These
will of course vary widely in their contents and syntax.

Library functions and header files

Library functions are defined in ‘header files’; source code text files which define the
facilities of a particular set of functions. A header file has a standard “.h’ extension, so
that one of the few standard C++ libraries is called, for example, ‘iostream.h’. To use the
functions contained in a header file we must ask the compiler to include the file in our
program. This is called a ‘preprocessor directive’ (that is, it tells the compiler to do some-
thing before compiling the rest of the program) and looks like this:

#include <iostream.h> .

Nearly all C++ programs will begin with at least one ‘#include’, since there is very little
you can do without library functions. In some cases, the header files do not contain all
the appropriate source code, and your program will also need to be linked to some other
associated library file. However, since the detail of this is implementation dependent,
you will need to refer to the appropriate manuals for your own compiler.

What has this got to do with extensibility? The key point is that as well as including
functions which are in the C++ library provided with your compiler, you can include
functions you have defined yourself, and utilise those in your programs too. In effect,
you can extend the language as much as you like by defining more and more functions
to do what you want.

In object-oriented programs, we can use the ‘preprocessor directives’ to include libraries
of object classes which we can create for ourselves and/or acquire from third party
suppliers.

Question 2.3 Why is it necessary to include header files in C++ programs?

Because the syntax of C++ is relatively small, much of ifs functionality comes not from the use of keywords but
from predefined functions stored in libraries. These are accessed by including the appropriate header file in the
source code. As well as functions, object classes may also be defined in header files.

C++ and other OO languages

How does C++ compare with other object-oriented languages? There are a number of
object-oriented languages available with their own particular characteristics (some of
these languages are listed in Fig. 2.2, but this is a very partial set — ref [Booch, 1994 pp472
—490]). One thing which characterises C++ is its hybrid nature, as an orthogonal exten-
sion of C. ‘Orthogonal’ is a commonly used term which strictly speaking means some-
thing to do with right angles, but in this context is used to mean that the object-oriented
extensions do not affect the existing syntax. C++ is (with a few minor exceptions) orthog-
onal to C, and it shares this characteristic of being a direct extension of another language
with CLOS (Common Lisp Object System), which is based on Lisp with object-oriented

17

2 What is C++2

18

facilities. Previous ‘object-oriented Lisps’ included “Loops’ and ‘Flavors” but CLOS has
superseded these.

Algol
C Lisp

C++ CLOS

Fig. 2.2: Some object-oriented languages and their ancestors

Extended procedural languages contrast sharply with “pure” object-oriented languages
such as Smalltalk and Eiffel which are not based on pre-existing sets of syntax (though
there has been some cross-fertilisation between LISP, CLOS and Smalltalk). In Smalltalk
‘everything is an object’, and the language is fully integrated with its graphical user
interface (GUI). It is impossible to write a Smalltalk program independent of its environ-
ment, which comes in two main versions — ‘Smalltalk-80" and ‘Smalltalk/V’. A Smalltalk
program is only executable within that environment and is not portable beyond it, which
means something of a processing and cost overhead for those wishing to use a Smalltalk
application. It is not really possible to learn object-oriented concepts incrementally in
Smalltalk; rather one has to go in at the deep end and sink or swim!

The Eiffel language is named after the French engineer and the tower he built, which
serves as an analogy for object-oriented software construction — ‘It is built of a few small,
simple parts which you combine’ [Meyer in Watts (2), 1992 p-29]. It was originally devel-
oped by Bertrand Meyer in 1985 (though like C++ is under constant development) and is
described in Meyer’s book ‘Object-Oriented Software Construction’ [Meyer, 1988]. Eiffel
is, like Smalltalk, entirely based on the implementation of object-oriented concepts and is
not an extension of an existing procedural language syntax (though it owes a lot to
Simula in concept). It contrasts with it, however, in not being dependent on a graphical
environment. Executable Eiffel programs are as portable as those generated by C++.

In the software marketplace, it seems that the close similarity of C++ with an existing

commonly used language has been something of an advantage, in that former
C programmers are more willing to learn the additional syntax than to learn a

2 What is C++2

completely new language from scratch. The ability to either learn or convert to the
object-oriented syntax elements incrementally seems to be an aid to the transition to
object-orientation for many programmers, though it often leads to rather odd program-
ming practices during the transition which are neither one thing nor the other (neither
procedural nor wholly object-oriented). Nevertheless, Stroustrup wholly endorses this
approach of taking on board object-oriented syntax one step at a time —“You don’t expect
things to happen in one step ... It takes a little time but it always happens ... going in at
the deep end is just asking for failures’. [Stroustrup in Watts (1) p-34]. This should be a
good maxim to bear in mind as you read this book!

More recently, Java has benefitted from its similarity to C++, providing a simple learning
curve to a pure object-oriented language for existing C++ programmers. Java has been
described by its creator, James Gosling, as ‘C++ without the guns, clubs and knives’,
because it builds on the best features of C++ while removing some of its more complex
syntax.

Question 2.4 Is C++ an objectoriented language?

C++ is a procedural language (C} with objectoriented extensions. Whether that makes it a ‘true’ object-oriented
language depends on your point of view — some would claim that only languages such as Smalltalk and Eiffel are
objectoriented because they are not based on an existing procedural language. Java sits somewhere between
the two, as a language based on C++ but with most non objectoriented characteristics removed.

Approaching C++

In order to learn C++, some elements of C syntax have to be understood. Without the
‘nut and bolt’ components of a program ~ data types, arithmetic and assignment expres-
sions, loops and selections — the larger scale “objects’ cannot be built. However, to learn
C++ as an object-oriented language is conceptually different from learning C++ as ‘a
better C'. The approach of this book is to introduce the syntax of object-orientation as
soon as possible, with the minimum amount of C syntax. To this end, the next chapter
covers the basics of syntax common to C and C++ as a basis for implementing the object-
oriented examples which follow.

Summary of key points from this chapter
1. C++is derived primarily from two other languages — C and Simula 67.

2. C++isa‘hybrid’ language since it is a procedural language with facilities for object-
orientation ‘orthogonally’ added. This contrasts with ‘pure’ object-oriented
languages such as Smalltalk, Eiffel and Java.

3. A C++ program is based on keywords and libraries of functions. These function
libraries may be written by the programmer or be supplied with the compiler. In an
object-oriented system, libraries contain classes for the creation of objects. The use of
libraries is what makes C++ an easily extensible language.

4. C++ may be learned as a procedural language (a ‘better C’) or as an object-oriented
language. In either case, much of the underlying syntax is the same, but the
programming approach is different.

3 Getting to grips with C++

Part 1 Data types, operators, functions and 1/0

Overview

In this part of the chapter, enough of the essential syntax of C++ is outlined for simple
programs to be written. The areas of syntax covered here are largely those directly inher-
ited from C, since they cover the basic programming concepts of data representation,
arithmetic and functions. However, some aspects of syntax (for example ‘pass by refer-
ence’, comment notation and empty function parameter lists) apply to C++ only. Simi-
larly, the I/ O library used is exclusive to C++. Like C, C++ is case sensitive, and all C++
keywords must be written in lower case. In this book, all variable (and object) names also
appear in lower case, while function names are in lower case but with embedded capitals
(see later examples).

The basic requirements

In order to approach the object-oriented facilities of C++, it is vital to understand how to
create the fundamental building blocks of any program, object-oriented or not. The
purpose of this chapter is to introduce enough of the syntax of C++ for the ensuing
examples and exercises to be understood. It is by no means meant to be exhaustive.

Data types

The fundamental building blocks of any language are the data types it can handle, since
a program has to represent data in order to do any useful processing. These data types
are used in all languages to declare variables (or constants) which will contain values
when a program is running. As you may recall from the last chapter, C is a derivation of
a ‘typeless’ language called BCPL, but one of the key differences between them is that C
(and C++) do have a range of data types. The data types which we can use to declare
variables and constants in C++ are listed in the following table. Since implementations of
these data types vary, the ranges and sizes of each type may also vary. The specific exam-
ples used here are typical but not defined as part of the standard language.

20

3 Getting to grips with C++

Type Range Bytes | Represents

From To
char -128 127 1 characters
unsigned char 0 255 1 characters
short -32,768 32,767 2 whole numbers
unsigned short | 0 65,353 2 whole numbers
int -32,768 32,767 2 whole numbers
unsigned int 0 65,353 2 whole numbers
long —2,147,438,648 2,147,438,647 |4 whole numbers
unsigned long 0 4,294,967,295 |4 whole numbers
float” 3.4x10-38 3.4x10-38 4 fractional numbers
double* 1.7 x 10-308 1.7 x 10-308 8 fractional numbers
long double* 3.4 x1049% 3.4 x 104932 10 fractional numbers

* Positive ranges only shown. There will also be a range for negative numbers.

While this might seem like a long list, there are actually (as the table indicates) only 3
fundamental types of data which are being represented here, with variations according
to the likely maximum size of number which may need to be stored in a particular
context:

The three basic data types

1. Single (ASCII or EBCDIC) characters (letters, digits and punctuation characters), are
represented by the ‘char’ data type.

2. Whole numbers: ‘short’, ‘int’ and “long’ types (all ‘unsigned’ if required - if only
positive numbers need to be stored). The ‘short’ data type is usually the same size as
int’ - normally two bytes - and the two are interchangeable for all practical
purposes, though the “short’ type is not often used.

3. Numbers including decimal fractions: “float’, “double’ or “long double’.

There is also a data type called ‘void’, which means no data type at all!l The use of such a
data type will become clear when we look at functions. You may have noticed that there
is no built in ‘string’ type in C++. This means we have to handle strings in a rather indi-
rect fashion, as will be explained later. The ANSI standard also includes a ‘bool’ type
which can have two values, either false (zero) or true (non-zero).

Choosing data types

When choosing data types to represent something in a program, think about the likely
data range which the variable will need to hold. For example, if a variable is to hold
student exam scores out of 100, then an int type will be more than sufficient. However, if
the variable is to hold, for example, the population of Britain (some 55 million or s0),
then the integer type will be too small, and a long data type will be required. Unsigned
variables are useful if we know there will never be a negative value. If the variable
records how many students are on a course, then the value can never be less than zero, so
an unsigned variable may be used. This only becomes an issue if we want to make the

21

3 Getting to grips with C++

most out of the potential storage, since an unsigned variable roughly doubles the
maximum positive number which can be stored. Of course, there is no real problem with
using a data type which is too big, though it may use unnecessary storage.

Any variable which is likely to contain decimal fractions will of course have to be at least
a float, as will a variable which is required to handle very large numbers. Although it
only takes up the same storage space as a long, the storage method of a float is different
so the potential data range is much greater. Accuracy as well as size is an important
consideration - generally speaking, the larger the storage of the data type, the higher its
precision will be. For programs dealing with astronomy for example the ‘long double’
data type would probably be necessary to deal with large numbers and accuracy
requirements.

The char type is an interesting one, since according to the table, it holds numbers, but is
usually used to represent characters. Which particular character each number represents
will depend on the conversion table being used by your compiler, typically ASCII
(American Standard Code for Information Interchange) but maybe EBCDIC (Extended
Binary Coded Decimal Interchange Code). Both tables work on the basis that each char-
acter is represented by a number which can be stored in binary code in a single byte (i.e.
8 binary digits), and the number of characters in the table is 127 (because that is the
maximum storage of a char data type; 1111111 in binary — 7 bits plus the sign bit). The
unsigned version of the char data type gives us 255, (no sign bits, so 11111111 in binary)
which is known as the extended character set. This includes lots of occasionally useful
symbols such as greek letters and simple text based graphics characters. A char can be
assigned either a numeric value (the code number of a character), or the character itself,
surrounded by apostrophes. For example, (using ASCII code) the number 65 and the
character ‘A’ are equivalent values for a char data type, since 65 is the ASCII code for a
capital “A’. Data such as ‘A, or any other single character between apostrophes, is known
as a ‘character constant’.

The ‘escape sequence’ characters

22

A character constant in a C++ program may also be an ‘escape sequence’ if preceded by
the backslash character (\). Although these may appear to contain two characters, they
still represent single ‘chars’. This is because the escape sequences are references to
numbers on the character table. For example, ‘\n’ represents the newline character
(ASCII number 10). The escape sequences are:

newline \n bell \a
horizontal tab \t backslash WA
vertical tab \v question mark \?
backspace \b single quote \
carriage return \r double quote \"
form feed \f integer 0 \0
octal number \ 000 hex number \xhhh

Most of these are applicable to formatting output. Note that since the backslash is the
escape character, it has to have its own escape sequence to be usable in another context.

For example, a DOS directory path normally looks like this:

3 Getting to grips with C++

A:topdinsubdinanotherdir
but in a C++ program would have to be defined as:

A:i\ttopdir\subdir\\anotherdir

Octal or hex numbers may be used to represent any character in the table as an alterna-
tive to the character itself or its decimal equivalent. The ‘V%’ character for example can be
represented by any of the following:

decimal: 171
octal: 253’
hexadecimal “xAB’

Question 3.1 What would be appropriate data types to store the following:
1. Someone’s height in metres
2. An exclamation mark (1)
3. The number of students in a university

1. A float, because it will contain a decimal fraction.
2. A char, because it's an ASCH character.
3. An int, or more appropriately an unsigned int, since there will never be a negative number of students.

Declaring variables in a program

Variables are declared in a C++ program by following the type name with the variable
name, for example:

char a;

int b;

float c;
These declarations give us a char variable called ‘@’, an int variable called ‘b’ and a float
variable called ‘c’. Note the use of the semicolon — every C++ statement ends in a semi-
colon. Extra white space and line feeds are ignored by the compiler, so it is ok to split
statements over more than one line or to pad code with spaces to improve layout.

Assignment

Once we know what data types can be used in a program, we need to be able to assign
values to them. This is simple in C++, since it just involves the equals (=) sign, known as
the “assignment operator’. For example, if we want to assign the value 4 to an integer
called x.

int x;
X=4;

Or we can both declare and assign in one line.
intx=4;

Remember that of course you only declare a variable once, so to assign another value to
X" later it would not be re-declared:

intx =4;
X =2;

23

3 Getting to grips with C++

Constants

As well as declaring variables in a program, we may want to declare and assign
constants — those values which must remain constant throughout the execution of a
program. This is done with the keyword ’const’” as follows:

const float Pl = 3.141;

const int CHARBUFFER = 80;
A “const’ cannot have its value altered, and it is common practice to write constant
names in upper case to differentiate them from variable names which are typically in
lower case. Note that C++ is totally case-sensitive, so that ‘pi” and "PI' would be regarded
as different variables by the compiler (as indeed would ‘Pi" and ‘pl’!).

Arithmetic operators

Assignment alone is not very useful in a program - it is generally used in association
with some kind of arithmetic. C++ has the four familiar arithmetic operators which are
common to most programming languages, plus a ‘remainder” operator:

add +

subtract -

multiply *

divide /

remainder %
You should be familiar with the usage of the four principal operators in other languages,
and the order of precedence is the usual one — multiply and divide are evaluated before
add and subtract e.g.

intx=4+2%*3;
Since the multiplication will be executed before the addition, the result would be 10.
Again, C++ follows other languages in the use of brackets to alter the order in which

parts of an expression are evaluated. To force the addition to be executed first we can
write:

intx=(4+2)*3;
As you would expect, this gives the result of 18, since the addition is performed before
the multiplication.

The remainder operator has equal precedence with multiply and divide. Operators of
equal weight (e.g. add and subtract) are evaluated left to right. For example:

intx=5+3-4;
will evaluate the addition before the subtraction.
The remainder operator works quite simply as follows:

intx=5/3;

inty=5%3;
While ‘x” would contain 1 (the result of dividing 5 by 3) ‘y’ would contain 2 (the
remainder from dividing 5 by 3).

Unary operator shorthand

24

C++ parts company with most other languages in that it has some arithmetic shorthand
which makes some expressions less clumsy when using ‘unary” operators (those which

3 Getting to grips with C++

have one operand). In fact they convert what would be ‘dyadic’ expressions (more than
one operand) to unary. The most ‘famous’ must be the increment operator, since it
appears in the name of the language! This is the “++ operator which adds one to a vari-
able as follows:

int counter = 1;
counter++;

In this example, the integer variable ‘counter” would be incremented to hold the value 2.
We can see that the increment operator is simply a shorthand for the following;:

counter = counter + 1;

There is also a decrement operator, which logically enough is --" and subtracts one from
a variable:

counier--;
This would subtract 1 from the current value of ‘counter’, and is shorthand for:

counter = counter — 1;

Other expression shorthands

Both the increment and decrement operators are only appropriate when we need to add
or subtract 1 from the existing value of a variable. However, we also have a shorthand
for changing the value of a variable by arithmetic on its existing value. In this syntax
outline, ? means any one of the 5 arithmetic operators:

In general terms: variable_name = variable_name ? n

can be replaced with: variable_name ?=n

Therefore to add 5 to “counter’ we could replace:
counter = counter + 5;

with:
counter += 5;

Variables can be decremented similarly, so to subtract 4 from ‘counter’ we could write:
counter -= 4;

Similar examples for the other operators might be:

counter = counter * 2; is equivalent to counter *= 2;
counter = counter/ 2; is equivalent to counter /= 2;
counter = counter % 2; is equivalent to counter %= 2;

These modifying shorthands are to some extent useful in simplifying code, though they
still lack the COBOL simplicity of ‘ADD 1 TO Counter’!

Question 3.2 Why do we have two forms for some types of arithmetic in C++8

In some circumstances, shorthand versions of simple expressions (inherited from C, which needed to be concise
when used for writing Unix) are available. These provide for more succinct code, and since they only work with
a fixed set of simple expressions they need not lessen readability if applied with discretion.

25

3 Getting to grips with C++

Prefix and postfix notation

The examples of the increment and decrement operators above both used ‘postfix’ nota-
tion (i.e. the “++ or ‘-’ appears after the variable). We may also use ‘prefix’ notation (the
operator appears before the variable):

postfix notation: counter++ or counter--

prefix notation: ++counter or --counter
This makes no difference if the operator is not used as part of a larger expression, but can
be significant if it is. If one of these operators is used in prefix notation, then the operator
will execute before the rest of an expression, but if postfix notation is used then it will be
executed afterwards. For example, if the value of our ‘counter” variable is to be assigned
to another variable in the following expression:

int counter =1;

int X = counter++;
The value of x will be 1, because the increment operator (which adds 1 to counter) will be
evaluated after the assignment of the value of ‘counter’ to “x” (postfix notation). With
prefix notation, the value of ‘x” will be 2:

int counter = 1;

int x = ++counter;
To avoid confusion, the increment and decrement operators will not be used as part of
larger expressions in this book, and the postfix notation will be adopted in all cases.

Because of the different meanings of prefix and postfix notations, it has been suggested
that ‘++C’ is a better name for the language than ‘C++'! [Stroustrup, 1995 p.4] (Ponder
that at your leisure).

There are a number of other operators for various uses in C++, many of which are
beyond the scope of this book. For a full listing, see “The C++ Programming Language’
[Stroustrup, 1995 pp.89-90].

Functions

26

Before attempting a program, we have to look at the format of C++ functions. C++
programs are basically just a series of functions which are able to call each other. A func-
tion has 4 features:

1. A Name

2. A Body

3. A Return Type
4. A Parameter List

The name must be a unique name (though what constitutes a unique name is more flex-
ible than you might think).

The ‘body’ means the actual C++ code which defines how the function works. This is
surrounded by braces {} (also known as curly brackets). Braces are very important in
C++ because they define ‘scope’ - any variable declared within the scope of a set of
braces is only “visible’ (useable) within that scope. i.e. it is only visible between its decla-
ration and the closing brace of its scope.

The ‘return type’ is the type of the single variable which the function is able to return to
whatever other function called it.

3 Getting to grips with C++

The parameter list contains any values which the function needs to use from outside
itself in order to do what it has to do. This list is enclosed in ordinary round brackets ().

This, then, is the general format of a C-++ function:

return_type function_name(data_type parameter1, data_type parameter?2...)

function_body
}
The return type of a function is ‘int’ by default, so if no return type is declared, the
compiler expects the function to return an integer. It is not good practice to use the
default type, since it lessens the readability of the source code. The return type should
always be declared, even if the type is ‘int’ (the default). If no data is to be returned from
the function, then its type is declared as “void’.

The parameter list may also be ‘void’, when there are no parameters to the function. The
brackets may be left empty if this is the case.

i.e (void) meansthesameas ()

If there is more than one parameter, then they should be separated by commas. Each
parameter must be defined by both a data type and a (local) name.

In the following example, a function called ‘square’ takes an integer parameter (with the
local name “value_in’) and returns the square of that value. The return type is therefore
‘int’. Any function which is not ‘void’ must contain a ‘return’ statement as the last state-
ment in the function. In this case, the function returns an ‘int’, and the last statement in
the function body is ‘return squared’ - ‘return’ is the keyword for returning a value from
a function, and ‘squared’ is the name of a temporary integer variable used to hold the
result of the expression.

int square (int value_in)
{ int squared = value_in * value_in;
return squared,;
}
The ‘return’ statement may return the result of an expression directly instead of via a
variable. We could therefore rewrite the above function as follows:

int square (int value_in)

{
}

return value_in * value_in;

Pass by value and pass by reference

By default, most types of function parameter are passed ‘by value’, which means that the
function makes a copy of each parameter which is passed to it, and the original data is
unaffected. C++ also has a simple ‘pass by reference’ syntax, which allows the actual
variable rather than a copy to be passed to a function. This is an example of C-++ being ‘a
better C’ — C does not have this simple form of a pass by reference mechanism. One of
the key advantages of this is that it allows more than one value to be derived from a
function. With pass by value, we can only return one value from a function. With pass by
reference we can change more than one value directly. The syntax for a ‘pass by refer-
ence’ parameter is to add the ampersand character (&) to the end of the data type, which
makes the name of the parameter an ‘alias’ for the actual variable, not the name of a

27

3 Getting to grips with C++

temporary copy. If we wanted the above (‘square’) example to square the original data
parameter directly, the function would look like this:

void square (int& value_in)

{

value_in = value_in * value_in;
}
Note that we no longer need to return a value from the function, since ‘value_in" is
directly accessed and altered. Therefore the return type is ‘void’. A useful example of
‘call by reference’ is a function which swaps the values of two variables as follows (note
the use of commas to separate multiple parameters):

void swap (int& first, int& second)

{
int temp;
temp = first;
first = second;
second = temp;

}

In effect we are deriving two values from one function, since the original variables (the
‘actual parameters’) represented by ‘first’ and ‘second’ (the ‘formal” parameters) are both
directly changed by the function.

Pass by reference does not necessarily imply that the parameters are to be changed. It
may be used simply to avoid the overhead of making a copy of the parameter. In cases
like this, the ‘const’ prefix is often used to indicate that, although a parameter is being
passed by reference, it should not be changed by the function. We could rewrite the first
‘square’ function like this:

int square (const int & value_in)

{ int squared = value_in * value_in;
return squared;
}
In this version ‘value_in’ is passed by reference rather than by value, but still cannot be
changed by the function.

Question 3.3 What happens to the two parameters used by the following function?
void aFunction(char& a, char b)

The first parameter (a) is passed by reference, which means that the actual variable will be accessed by the func-
tion. The second parameter (b) is passed by value, which means that the function only has access to a copy of the
data held in the original variable.

Calling functions

Functions are ‘called’ (made to execute) by their names, followed by the appropriate
parameter arguments. A function called ‘addToCount’ for example would be called as
follows, assuming in this case it takes no parameters, and returns no values (i.e. itis a
‘void’ function with a “void’ parameter list):

28

3 Getting to grips with C++

addToCount();

A void function called ‘addToTotal” which takes an integer parameter might be called as
follows (either with a literal number or a variable — ‘0’ in this example):

addToTotal(30); OR addToTotal(n);

If a function gives a return value, then it should be called so that the return value is used
(if the return value is not used, then you would probably get a warning from your
compiler). If a function called ‘getUserOption’ returns an integer, then we would need to
do something with that return value such as putting it into a variable as follows:

int x;

X = getUserOption();

The ‘main’ function

If functions are called by other functions, where does a program start? The answer is a
special function called ‘main’, which is where all C-++ programs start executing (there are
exceptions to this which need not concern us here), and ‘main’ is called by the operating
system when the name of the program is typed at the operating system prompt. Like all
other functions, ‘main’ can take parameter arguments, and return a value (though this is
returned to the operating system rather than to another function). Since we very often
don’t want to pass any parameter arguments to main, and do not want to return a value,
it frequently looks like this:
void main(void)

{
}

Notice the use of the return type ‘void” here. As we know, whenever we have a function
which does not return any values, the type of that function is void. This applies to ‘main’
just the same as for all other functions. If there is no parameter list, then that is also void.
In C++, a void parameter list is usually indicated by empty brackets, which means the
same thing as ‘(void)’

void main()

{
}

This convention of using an empty list rather than ‘(void)’ will be used for the remainder
of the examples in this book.

Function declarations, definitions and prototypes

Every function in a program must have a function declaration (which tells us about the
function’s name, return type and parameters) and a function definition (the implemen-
tation of that function). These may appear together as a single unit of code, as in our
earlier example of the ‘square” function:

int square(int value_in)

{
int squared = value_in * value_in;
return squared;

}

29

3 Getting to grips with C++

In this case the first line of the function (sometimes known as the “declarator”) gives us
the appropriate declaration of return type, name and parameters (including their local
identifiers) for the function call.

Static type checking

C++ will not allow a function to be used before it has been declared, and the reason for
this is so that the compiler can perform ‘static type checking’, which checks that the data
types used in all function calls are appropriate to the actual function requirements. For
example, it would ensure that our ‘square’ function (above) could not be called with an
inappropriate argument type, or the wrong number of parameters. In practice, numeric
data types are often interchangeable when used with functions because the compiler is
able to make implicit temporary conversions between similar types. It would be
perfectly acceptable to the compiler to call ‘square’ with a float argument for example,
since the conversion to an integer is straightforward (if not exactly accurate!). However,
the compiler would certainly complain if we tried to call the function with more than one
argument, as in this example:

inta=3;

intb = 4;

int ¢ = square(a, b);
The function call would be flagged as an error by the compiler for having more argu-
ments than the function’s parameter list allows.

In any case we should beware of allowing the compiler to make temporary type conver-
sions when calling functions.

Prototyping functions

30

In some cases, the declaration of a function may need to appear separately in the source
code some time before the definition. If we have a function call occurring after the defin-
ition of that function, then static type checking is not a problem, since the compiler is
‘aware’ of the data requirements of the function, but what if we need to include a call to
this function before the declarator has been ‘seen’ by the compiler? This is often the case
in, for example, larger programs consisting of more than one separately compiled source
file. It may be that our ‘square’ function needs to be called in a section of code which is
compiled before the function itself is compiled. In these circumstances, we need to use a
function declaration (or ‘prototype’) before the function. In this example, assuming that
‘square’ is to be called before its definition, we would have to prototype the function
before the call as follows:

Declaration (Prototype): int square(int value_in);
Function call: void main() (or some other function)
{

int a = square(10);

}
Declarator: int square(int value_in)
{
/1... function definition
}

3 Getting to grips with C++

The prototype, then, is simply the declaration of the function’s name and data types so
that the compiler can ensure that any calls to the function are made with appropriate
values.

Question 3.4 What does the following function prototype mean, and what purpose does
it serve for the compiler?

char aFunction(int x, float& y);

The function called ‘aFunction” has a return type of ‘char’ which means that when it is called, its return valve
should be handled as a ‘char’ (or compatible] data type. Its parameter list contains an infeger which is passed by
valve (i.e. the function processes a copy of the original variable) and a float which is passed by reference. This
means that the original variable is processed directly by the function, not a copy of its data. The compiler uses this
information provided by the prototype to statically type-check any calls to the function.

Note that the prototype does not have to name the parameter(s), and indeed may even
use a different identifier to that used in the declarator without the compiler flagging an
error, since it ignores any identifiers on the prototype. Our declaration above might
equally have appeared as:

int square(int); " (no identifier)
or

int square(int a_value); (a differently named identifier)
However, to aid readability, it is good practice to use a consistent identifer in both the
prototype and the declarator.

A simple program
So far we know how to declare a variable of a particular type, how to assign values and
what the basic arithmetic operators are. We also know that a program has at least one
function in it, and that the first function to be executed is always called ‘main’. We know
too that a C++ statement ends in a semicolon, so let us write a program which adds the
assigned values of two integer variables ("x’ and ‘y’) and puts the result in a third integer
variable ("z’). In other words, it adds two numbers together...

void main()
{
int x;
inty;
int z;
X =4;
V=2
Z=X+Y;
}
So far so good. You could even compile, link and run this program, but it won’t do
anything very exciting because we can’t see any output, or enter any input. What we
need is some syntax to achieve some simple keyboard /screen input and output.

Simple 1/0
Unfortunately C++ has no I/O syntax! At least, there are no keywords built into the
language to allow I/O. Therefore we have to use a library — like much of C++, we use
functions which are defined elsewhere and included in our program by the use of header
files.

31

3 Getting to grips with C++

C++ has its own set of I/O library syntax which is very easy to use. This is defined in a
header file called ‘iostream.h’, which we must include in our program before ‘main’. The
syntax for including a library file is, as we know, the ‘hash’ sign (#) followed by the word
‘include’, followed by the name of the appropriate header file in pointed brackets (<>)

#include <headername>
To use the “iostream.h’ header file, then, we would start our program with:
#include <iostream.h>

What does this allow us to do? Well in fact it gives us access to a large object-oriented
library of I/ O functions, but at this stage, we don’t need to know anything other than the
simple I/ O syntax.

Output

32

To output data onto the screen, we use the word “cout’ (pronounced see out), followed
by the ‘insertion’ (or ‘put to’) operator, which is two ‘smaller than” symbols: <<. This, for
example, would output the contents of variable ‘X’ to the screen:

cout << X;

We can use this syntax to output any type of variable, or string literals enclosed in speech
marks:

cout << "This is a string literal";

Any function which returns a value can also be put into a ‘cout’ statement. If we assume
that a “getAge’ function returns a value, we could display that value:

cout << "Age is: " << getAge();

As this example shows, a series of items can be output in one ‘cout’ statement by sepa-
rating them with insertion operators as follows (note the inclusion of spaces):

cout << "Value of xis: " << x << " Value of y is: " << y;
These will all display on one line. If “X” has the value 10 and 'y’ the value 3 for example
then it will display the following:

Value of x is: 10 Value of y is: 3

What if we want to force a line feed in our output? there is a simple way of doing this:
‘endl’” (end line).

Whenever ‘endl’ is put into a ‘cout’ statement, it forces a line feed, so this will put the
two variables on different lines:

cout << "Value of x is: " << x << endl << "Value of y is: " <<y << end|;
The output from this (given our previous example values) would be:
Value of x is: 10
Value of y is: 3

In fact ‘endl” is virtually identical in function to the escape sequence “\n’, and the two are
interchangeable for all practical purposes (your compiler may not have ‘endl” defined in
‘jostream.h’ but ‘\n’ will do just as well. Alternatively, you will probably find ‘endl’
defined by another header file called ‘iomanip.h’).

Let us modify our addition program to output the result on the screen. We will also make
another simple modification. If more than one variable of a single type is to be declared,

3 Getting to grips with C++

then they can all be declared in one statement by separating the variable names by
commas. Here, instead of declaring the integer variables x, y and z separately, they are
all declared in one statement. We also include ‘iostream.h’ so that we can use ‘cout’:

#include <iostream.h>

void main()
{

intx,y, z;

X =4;

y=2;

Z=X+Y;

cout << "Value of zis: " << z << endl;
}

We will now see some output from our program, namely:

Value of z is: 6

Input

To input data from the keyboard, we use the word “cin’ (pronounced see in), followed by
the ‘extraction’ (or ‘get from’) operator, which is two “greater than’ symbols: >>.

The following will wait for a value to be entered at the keyboard and (when enter is
pressed) will put that value into the variable x":
cin >> X;

We can use this syntax to accept data into any type of variable. Similarly to ‘cout’, a series
of items can put into one statement by separating them by extraction operators as
follows:

cin>>x>>vy;

However, this form is rarely used as it is a potential source of error — the two inputs have
to be separated by a space. Usually, a “cin’ statement is only used to accept a single value
at a time.

Unlike ‘cout’, ‘cin” automatically forces line feeds, so ‘endl’ is not applicable to ‘cin’. A
series of ‘cout’ / “cin’ statements will all by default be paired on separate lines, the input
following the output on the same line, followed by a line feed as follows:

cout << "enter a number *;

cin >> X;

cout << "enter another number ";
cin>>vy;

sample output/input:
enter a number 7
enter another number 8

Sometimes we may want to force at least one line feed before a ‘cout’ statement rather
than at the end of it. The ‘endl’ may therefore be used at the beginning of a “cout’ state-
ment, as below:

cout << endl << "Enter a number ";

33

3 Getting to grips with C++

Now we know how to input and output data, here is a final version of our program,
which now adds the values of two variables entered at the keyboard and outputs the
result on the screen. This example uses ‘endl” at the beginning of ‘cout’ statements to
leave blank lines between output:

#include <iostream.h>
void main()

{
intx,y, z;
cout << "Please enter an integer ";
cin >> X;
cout << endl << "Please enter a second integer ";
cin>>vy;
Z=X+Y;
cout << endl << "Total is: " << z << endl;

}

An example test run:

Please enter an integer 12
Please enter a second integer 4
Total is: 16

Simple though it is, the example above illustrates the fundamental building blocks of
any C++ program — a ‘preprocessor directive’ (including a header file), a ‘main’ function,
input, output, assignment and arithmetic.

Question 3.5 What must come before ‘main’ in any program which uses keyboard and
screen for /0%

In order to use ‘cin’ and ‘cout’ for I/O, we have to include the standard C++ header file ‘iostream.h’, since the
compiler does not have any integral I/O syntax. The header file must be included outside ‘main’ before any of
the syntax is used, as follows:

#include <iostream.h>

Comments

34

Before proceeding further, the syntax for comments in C++ source code needs to be
introduced, since it is used in many of the examples in the second part of this chapter.
There are two ways of writing comments in C++, one inherited from C, and one taken
from BCPL.

The C style comment is as follows
/* This is a comment */

Everything in the source code between a ‘/* and a “*/’ is ignored by the compiler,
regardless of how many lines the comment spans.

/**

*

* This is a muttiple line comment
using the syntax which is also
* available in C

*

**/

3 Getting to grips with C++

You can also use the style of comment introduced into C++ from BCPL, which is as
follows:

/' This is a comment

Note that while the comment has a beginning symbol, the */ /’, there is no terminating
symbol. This is because this style of comment is terminated by the end of a line. There-
fore such a comment cannot span more than one line.

// This is a multiple line comment
/I using the C++ syntax.
/I Note how we need a /" on every line

Summary

With the syntax covered so far, you should be able to write simple C++ functions and
programs which manipulate simple variables and allow user I/O. However, in order to
write programs of any complexity, we will need to look at the handling of strings of char-
acters as well as simple numbers, and the syntax for control structures (selections and
loops). These topics are dealt with in part two of this chapter.

Exercises

1. Using shorthand forms of the expressions as appropriate, make the following code
as concise as possible (note that this is an exercise in comprehension, not a recom-
mendation for programming style!).

#include <iostream.h>
void main()
{

int x;

x=1;

X=X+1;

X=X*5;

inty;

y=x-1;

X=x-1;

cout << "X =" << x;

cout << endl;

cout<<"y="<<y;

cout << endl;

}

2. Using the appropriate escape sequence, write a program to output the following line
on the screen:

C++ is an "Object-Oriented" language

3. Write a program to test the two versions of the ‘square’ function described in the text
(one passing a parameter by value, the other by reference). The values to be squared
should be input from the keyboard. Remember that the functions must be either
fully declared or prototyped before the main function to allow static type checking to
take place.

What happens if we pass data types other than an integer to the functions (e.g. a
float)?

35

3 Getting to grips with C++

Part 2 Arrays, strings, pointers and control structures

Overview

This part of the chapter describes C++ syntax for handling more complex data types
such as arrays and strings, and looks at the use of pointers. Implementation of control
structures (selections and loops) is also outlined.

Arrays

If you have programmed before, you should be familiar with the concept of an array. It is
basically a data structure representing a set of values of the same type which have the
same name but are identified by an index number (subscript). In C++, arrays are
declared and accessed by the use of square brackets, as follows:

Declaring an array (‘number_array’) of 10 integers:
int number_array[10];

Note that in common with many other languages, the 0 index is used, so that we have
access to 10 elements of the array in this range:

number_array[0]...number_array[9]

‘number_array[10] therefore does not exist. However, C++ has no “bounds checking’, so
the compiler will let you refer to array elements even if they are outside the declared
range. For example, we could refer to ‘number_array[20]" in a program, even though the
array only goes up to subscript 9. If you do this, dreadful consequences could result,
since the memory location of ‘number_array[20] could contain anything!

The moral is, be very careful never to use an array element which has not been explicitly
declared as part of the allowed range.

We may if we wish have arrays of more than one dimension. The following example
shows the declaration of a two dimensional array of floats:

float another_array[10]{5];

Initialising arrays

36

We may put values into any individual element of an array using the assignment oper-
ator, as in the following example which puts the value ‘99" into element 4:

number_array[4] = 99;

However, when declaring an array we may also wish to initialise its values, and we can
assign these in one statement by surrounding them in braces, separated by commas, as
shown here:

int number_array[10] = {99, 67, 3, 5, 7, 2, 34, 4, 98, 1};
In fact we can omit the array size if we wish, since the compiler can automatically size
the array from the number of values provided:

int number_array[] = {99, 67, 3, 5,7, 2, 34, 4, 98, 1};

A characteristic of arrays is that the array identifier in fact references a constant address
which may not be altered. In the example above, ‘number_array’ refers to the address of
the first element of the array (‘number_array[0]’) and this cannot be changed at run time.
If we try to display a numeric array using ‘cout’ (i.e. ‘cout << number_array;’) then we
will see that what is displayed is the address of the first element of the array.

3 Getting to grips with C++

Arrays and functions

Arrays are always implicitly passed by reference to functions, never by value. One impli-
cation of this is that they cannot be used as the return type of a function. To demonstrate
that arrays are passed by reference to functions, the following example shows a function
(‘setArraySize’) which takes two parameters; an integer representing the size of an array,
and an array of integers. The size value is put into the first array element (‘array_in[0]’)
by the function. Note that it is the original array which is passed to, and modified by, the
function, so that when we display the first element of ‘an_array’ it has in fact been
altered by the function, because ‘array_in’ is a local ‘alias’ for ‘an_array’ — they are one
and the same thing. Note that an array parameter can be denoted by empty square
brackets in the parameter list (we cannot of course always anticipate the size of any
arrays which might use the function).
#include <iostream.h>

/I definition of the function ‘setArraySize’
void setArraySize(int size, int array_in[])

{
array_in[0] = size;
}
void main()
{

// a constant for the array size
const int ARRAY_SIZE = 15;
// declare an integer array
int an_array[ARRAY_SIZE];
/I call the function
setArraySize(ARRAY_SIZE, an_array);
// display the first element of the modified array
cout << "First element is " << an_array[0];

}

The output from this program is as follows:

First element is 15

Pointers

Pointers are an important part of C++, and are a crucial mechanism for object-oriented
programming because they are used to control the creation and destruction of ‘dynamic’
objects in a program. A pointer is a simple concept — it points to a memory location
which contains data of a particular type. The contents of a pointer therefore is not data
but the address of some data. A pointer is declared by the use of an asterisk after the data
type as follows (in this case a pointer to an integer):
int* number_pointer;

The data type defines what may be stored in the address to which the pointer is directed,
so that ‘number_pointer’ above will contain the address of an integer-sized area of
memory. This typing of pointers is important since a pointer is a variable which can
undergo certain arithmetic operations such as ‘++ which moves a pointer to the next
item of data. Since different data types occupy different sizes of memory block, the data
type of the pointer defines how many bytes the pointer must be incremented.

Unlike arrays, pointers may be used as the return type of a function. However, when
pointers are used as function parameters or return types remember that they contain

37

3 Getting to grips with C++

addresses, and it is the memory address which is passed or returned, not the contents of
the address.

One very common application of both arrays and pointers is the representation of strings
of characters. Pointers also have a key role to play in referencing objects in object-
oriented programs.

Handling strings in C++

An

38

Unlike some other languages, there is no ‘string” data type in C++ (though there is a
string 'class' in the standard library, which will be described later). This is one of the most
difficult areas for those new to the language, since we can only represent strings of char-
acters in two rather indirect ways:

1. As arrays of type char
2. By pointers of type char

Neither of these approaches offers a complete solution to the representation of strings, so
in practice elements of both are often necessary. First, we will examine the use of arrays
of type char to represent strings of characters.

array of type char

As indicated previously, arrays in C++ are declared and accessed by the use of square
brackets. An array of 10 characters called ‘astring” would be declared thus:

char astring[10];

Since this contains 10 characters (from element 0 to element 9), we can use it to contain
(short!) words. In fact the maximum string which we could contain in this array would
be 9 characters long, since all strings must be terminated by the ‘escape sequence’ char-
acter ‘\0" (from the table in the first part of this chapter we can see that this represents
‘integer 0). Although this character is automatically and invisibly appended to strings of
characters in most contexts, if it is lost then strange results can ensue. Fig. 3.1 shows the
contents of ‘astring” when it contains the string ‘hello’. Note that the sixth element of the
array contains ‘\0’ to terminate the string. If ‘astring’ was to contain a 10 character string
(e.g. “characters’) then the terminating “\0” would be lost. Any attempt to display or copy
this string would cause problems since the string has an undefined length, and the
program would simply display or copy the contents of all the memory locations after the
string until a “\0” was encountered.

astring — | h|e| 1] 1]o]\0]

astring—»‘c‘h‘a]r|a[c‘t‘e‘r‘s‘

no "\0' character to terminate the string

Fig. 3.1: All arrays of type char must be terminated with the “\0’ character.
A 10 element char array can therefore only safely contain 9 characters.

3 Getting to grips with C++

Initialising character arrays
If we want to initialise a character array with a string literal, then we can use the assign-
ment operator (=), and speech marks round the string:
char astring[] = "hello";

This is a more compact syntax than that which is used with other data types, where the
array element values are separated by commas.

However, this is the only context in which the assignment operator can be used to put
literal strings into character arrays. We cannot, for example, assign a string literal to a
character array after it has been declared — this can only be done one character at a time:

void main()

{
char astring{4]; // Note size - 3 chars + \0’
astring = "abc"; // This will not compile!
astring[0] = 'a'; // This is ok

astring[1] = 'b';
astring[2] = 'c';

}

Likewise, if we want to make one array of characters equal to another, then unfortu-
nately the assignment operator cannot be used, and we have to use the functions avail-
able in a standard C header file called “string.h” which should be available in some form
in all compilers. (This means putting ‘#include <string.h>' at the beginning of our
programs).

For example, we might want an array of characters called ‘bstring’ to have the same
contents as the array “astring’. We CANNOT say:

bstring = astring; /Il not allowed

If “astring’ and “bstring” are character arrays then this will not work in C++. We have to
use a function such as the ANSI C “strcpy’ function which is defined in “string.h’ (or its
equivalent)

it works like this:
strcpy(destination, source);

so to copy the contents of “astring” into “bstring’, we would write
strepy(bstring, astring);

This would copy the contents of ‘astring’ into ‘bstring’, including the terminating “\(’
character.

An alternative standard function is ‘strncpy’, which takes an extra parameter indicating
the number of characters to be copied. This makes the copying a little safer, since we can
then avoid the possibility of putting too many characters into the array. If ‘bstring’ is an
array of 10 chars, then we might write the function as:

strncpy(bstring, astring, 9);

Remember that we need to reserve the last character position for the “\0’ terminating
character if required. This may be explicitly added:

bstring[9] = \0’;

The following program demonstrates the use of ‘strncpy” in safely copying a string from
one array to another. It also demonstrates the use of ‘cin’ and ‘cout’ with arrays — note

39

3 Getting to grips with C++

that the array of characters is, in effect, treated as a string. The allocation of the termi-
nating character ("\0’) to the last element of the array is an ‘insurance policy’ - if the
string being copied is longer than 9 characters then there will be no terminating char-
acter, so we have to provide our own. Remember that it is perfectly all right to assign
single characters to single elements of an array using the assignment operator:

#finclude <iostream.h>
#include <string.h>
void main()
{
char astring[20];
char bstring[10];
cout << "Enter a string (up to 19 characters!): ";
cin >> astring;
cout << astring << endl;
// strncpy will truncate any string longer than 9 characters
strncpy(bstring, astring, 9);
bstring[9] = \0’;
cout << bstring << endl;

}

This example run shows a long string truncated by the program

Enter a string (up to 19 characters!): Superconductivity
Superconductivity
Supercond

Using pointers to strings

40

From the above it is clear that using arrays of type ‘char’ to represent strings has a
number of drawbacks, since arrays are difficult to manipulate and cannot, for example,
be used as the return type of a function. A complementary approach is to use a pointer to
reference a string of characters. To declare a pointer to a string it must be of type ‘char’.
As we know, a pointer is defined by an asterisk between the data type (in this case ‘char’)
and the name of the variable, as follows:

char* string_pointer;

This declares a pointer of type char called ‘string_pointer’, which is able to point to the
first character of a string of characters!

We can use a char pointer to reference an array of characters quite easily:

void main()

{
char string[11] = "char array”;
char* string_pointer = string;
cout << string_pointer;

}

The assignment operator directs the pointer to the address of the first character in the
array, and the above program will display the text ‘char array’ using the pointer.

It is also easy to assign literals at declaration, similar to arrays:
char* string_pointer = "A string";

However, this is not a particularly safe way to create strings, since any attempt to assign
a longer string to the same pointer can cause other data to be overwritten. This is a
similar problem to going beyond the bounds of an array.

3 Getting to grips with C++

Another contrast between the syntax for arrays and pointers is that the assignment oper-
ator may be used at any time after declaration to make one char pointer equal to another.
The following program demonstrates that attempts to assign one array to another, or to
assign a string literal to an array after its declaration will lead to compiler errors. In
contrast, both of these processes are legal with pointers:

void main()

{
char a[10] = "spring";
char b[10] = "summer";

char* ¢ = "autumn";
char* d = "winter";

a=b; /I WRONG!! (will not compile)
a = "printemps" // WRONG!! (will not compile)
c=d; /l will compile
c = "fall"; // will compile

}

Being able to assign char pointers to each other is obviously useful, but there is a poten-
tial problem. This is because using the assignment operator with two pointers will not
copy the data itself, but the address of the pointer. In the following program, two strings
are assigned to two pointers of type char, and then the assignment operator is used to
make them equal. The effect of this is that the two pointers end up pointing to the same
memory address:

void main()
{
/I declare two ‘strings’ with initial values
‘char* a = "summer";
char* b = "winter";
// assign a to equal b
a=b;
}

Fig. 3.2 shows the contents of a and b before the assignment. When they are initialised
they will be pointing to separate strings in separate memory locations.

char* a = "summer";

char* b = "winter";

a —»Is‘u|mlm[e’r|\0]

b —»‘W‘i|n’t’e‘r‘\0[

Fig. 3.2: The two pointers initially point to separate
strings of characters at separate addresses.

Fig. 3.3 shows what happens when we execute the assignment statement ‘a = b’. In fact
the address to which ‘a’ is pointing is changed so that both ‘a” and ‘b’ are pointing to the
same memory location. When we redirect pointers like this, we should be aware that
there is no protection against changes being made to the string of characters we are
pointing at, and it may even cease to exist if the original pointer which referenced it acts

41

3 Getting to grips with C++

upon it in another part of the program. Generally speaking, using the assignment
operator with char pointers should only be used for short term processes. For safe
storage of strings, arrays are more reliable.

a=bh;

a [s‘u‘m|m|e[r|\0‘

b ——|wli[n|tfe]r\

Fig. 3.3: Using the assignment operator with pointers simply redirects
them by copying the address contained in one pointer to the other.

It is possible to use ‘strepy” (or ‘strnepy’) with character pointers to copy data rather than
addresses. Fig. 3.4 shows that ‘strepy’” will alter the data which char pointer ‘a’ is
pointing at rather than the address it references. However, this is not a recommended
approach since we may overwrite data in subsequent memory locations. This will
happen if we declare a character pointer to point to a string of one length and then copy
a longer string to it, or attempt to allocate a string of characters to a predeclared pointer.
Since a character pointer only points to the address of one character, what may be in the
subsequent memory locations is unpredictable, and using only pointers to handle
strings may therefore lead to obscure errors.

char* a = "summer";
char* b = "winter";

char* ¢;

strcpy(a,b);

a ——|wli[n[t]e[r]\
b ——|wli|n[t]e[r[\0
strepy(c,b);

Fig. 3.4: Although the ‘strcpy” function may be used to copy data from one
character pointer to another, it can also lead to memory corruption.

In Fig. 3.4, the use of “strcpy” with “a” and ‘b’ does not cause a problem because the two
strings are the same length. However, any attempt to copy a string to ‘c’, which has been
declared as a pointer without a string literal will overwrite memory.

A strategy for strings

In practice, we can see that although pointers provide a flexible means for string manip-
ulation, they can lead to ‘unsafe’ practices in some contexts. Therefore we are better
served by using arrays to store strings, but may use pointers to manipulate them. Alter-

42

3 Getting to grips with C++

native approaches might be to use the facilities provided by vendor-specific library
functions which may be provided with your compiler or by a third party supplier, or to
use dynamic memory to store strings. Dynamic memory management will be dealt with
in a later chapter.

Here is an example of combining arrays and pointers to provide string functionality. The
important point is that the parameter can be passed as a pointer, copied to an array, and
then the array can be returned (if necessary) as a pointer. The conversion is implicit
between the constant array address and the pointer variable which is returned:

char* truncateString(char* any_string)

{
char text_string[10];
strncpy(text_string, any_string, 9);
text_string[9] = \0’;
return text_string;

}

Declaring multiple pointers

Incidentally, you may find examples in other text books of the asterisk in a different posi-
tion. In fact, the asterisk can come next to the type (as above), next to the pointer name or
even between the two, separated by spaces. All three of these statements would have the
same effect:

char*t; or char*; or char*t;

The only circumstance in which this might cause confusion is if you declare more than
one variable in the same statement, since the asterisk will only apply to the first variable
in the list - it is not “transitive’. Take the following for example:

char x, vy, z;
We know that this declares 3 variables of type ‘char’. What about this?
char* x, y, z;

Is this 3 pointers of type ‘char’? In fact it is not. it is one pointer of type ‘char’ ('x’) and
two variables of type ‘char’ ('y” and ‘z’). Three pointers of type ‘char’ would have to be
declared as this:

char* x, *y, * z;
The main lesson to draw is that of seeking clarity. The above set of pointers is much
better declared as:

char* x;

char* y;

char* z;
Whilst this may appear long winded, its main advantage is that it is perfectly clear, and
also less likely to cause errors if changes are made to the declarations.

De-referencing pointers (numeric data types)

You should be aware that the asterisk has another application in relation to pointers,
which is to ‘de-reference” a pointer. This simply means that we can access the data which
a pointer is referencing by preceding the pointer name with an asterisk. Remember that
the pointer itself contains an address rather than data, and if we display a pointer (of a
numeric data type) then we will see a memory address, not the data in that address. In

43

3 Getting to grips with C++

De-

44

the following program an integer pointer is assigned to the address of an integer vari-
able. The address of any variable can be obtained by using the ampersand (the ‘address
of” operator) before the variable name, in a very similar manner to the ‘pass by reference’
syntax. In this example, the address of the variable ‘X" is obtained by this operator, i.e.
‘&x’. The pointer is displayed (an address will appear), and then the pointer is de-refer-
enced to show the data which is in that address:

#include <iostream.h>
void main()

{
// X is an integer variable
intx =4;
/'y is a pointer to an integer, assigned the address of x
int*y = &x
cout << "variable is: " << X << endl;
cout << "pointer is: " << y << endl;
cout << "dereferenced pointer is: " << *y << endl;

}

The output might be as follows (of course the actual address shown will vary)

variable is: 4
pointer is: 0x8f8f0ffe
de-referenced pointer is: 4

referencing character pointers

Pointers of type char (i.e. strings) behave in a rather different manner to numeric types.
Firstly, there is an implicit conversion when one is displayed using ‘cout’, so that the
string rather than the address is displayed. Secondly, if you de-reference a ‘char’ pointer
which you are using to represent a string you will get the single character which the
pointer is addressing. In this example program a string (‘C++’) referenced by a character
pointer is displayed complete, and then the first character (‘C’) is de-referenced. Then the
increment operator is used on the pointer (this is an example of ‘pointer arithmetic’).
This moves the pointer to the next character in the string (‘+’), so that the complete string
when displayed is missing the first character. The dereferenced pointer then shows the
second character only.

#include <iostream.h>
void main()

{
char* X = "C++";
cout << "string is: " << x << endl;
cout << "dereferenced char pointer is " << *X << endl;
X++;
cout << "string after incrementing is " << x << endl;
cout << "dereferenced char pointer is now " << *x << endl;

}
In this case, we get the output:

string is C++

de-referenced char pointer is C
string after incrementing is ++
de-referenced char pointer is now +

3 Getting to grips with C++

Question 3.6 What are the main differences between representing a string as an array of
characters or by a character pointer?

The primary difference is that an array refers to a constant address and a pointer is a variable whose contained
address may vary. This means that the syntax for handling the two representations of sirings is different. The
assignment operator may not be used with arrays, but may be used with pointers, though this only redirects the
pointer, it does not copy the value. Arrays are passed to functions by reference and therefore may not be used as
the return type of a function, but pointers may be both passed fo and returned from functions. In general terms,
both char pointers and arrays of chars are necessary for successful string manipulation.

Constructing larger programs

In order to begin writing object-oriented programs in C++, it is first necessary to know
how to use the simple programming constructs which apply to traditional programming
as well as object-orientation. The three fundamental components of any program
(defined by Bohm and Jacopini in 1966) are:

1. Sequence one statement following another
2. Selection making a choice between at least two alternative courses of action
3. lteration repeating a section of code zero or more times

Although these components are to some extent masked by the object-oriented approach,
they still underlie the construction and use of objects.

Sequence

The order in which program statements are executed in C++ is the same as for most
other languages ~ from top to bottom of the source code. As demonstrated in our
example programs, the compiler recognises the semicolon as representing the end of one
program statement. Apart from selections and iterations {below) there are occasions
when control may pass to a different line other than the next sequential statement, such
as “goto” (which is discouraged in all languages since it leads to unstructured program-
ming), ‘break’ and ‘continue’. Both ‘break’ and ‘continue’ relate specifically to control
within structured blocks of code, and are, in a sense, examples of a ‘structured goto’.

Selection

In order for a program to behave differently in different circumstances, it has to be able
to evaluate conditions and select alternative courses of action accordingly.

In C++ we have two ways in which selections may be made:
1. The if statement
2. The switch statement

The “if’ statement follows similar rules to the ‘if’ statements in other languages, which is
to say that it contains two (and only two) different courses of action and a condition.
Which of the two courses of action is taken depends on whether the condition is true or
false. One course of action may be, in fact, to do nothing.

45

3 Getting to grips with C++

The if statement

The general format of the if statement is:

if(condition)

else

with the ‘else’ part being optional. If there is more than one statement in the ‘if” or the
‘else’, then braces must be used to define the scope of the statement.

As an example, we might use an ‘if’ statement to find out if a variable (‘x’) has a value
greater than zero. Braces are used here, though they would be optional in this case since
there is only one statement in each part of the selection.

if(x > 0)
{
cout << "greater than zero";
}
else
{ .
cout << "less than or equal to zero";
}

Testing for equality

46

When writing selection statements, we need to express various conditions which
compare variables using ‘relational operators’. In C++ the following symbols are used:

Condition Relational Operator Example
equal to == if(x==7y)
not equal to l= if(x I=y)
less than < if(x < 0)
greater than > if(y > 10)
greater than or equal to >= if(x >=9)
less than or equal to <= if(y <= 100)

To evaluate more complex conditions we need to use the logical operators to combine
the simple relational operators above. There are three logical operators in C++:

Logical Effect Logical Operator Example

Logical AND && if(x > 0 && x < 10)
Logical OR I ifx==111y==1)
Logical NOT ! if(1x)

When evaluating Boolean (true/false) conditions, all expressions return either 0 (false)
or non-0 (true). For example, the NOT operator (!) is used above in the expression if(!x).
The expression will evaluate to be true if x is 0 (i.e. if x is false, then ‘not x” is true!).

3 Getting to grips with C++

The swiich statement

The general format of the switch statement is

switch(variable)

{
}

This is an appropriate construct when a number of possible states for a variable have to
be evaluated at one time.

case value: <action> ; [... ;break;]

This example assumes that different (void) functions are called by a user input:

intx;

cout << "Enter choice";
cin>> x;

switch(x)

{

case 1: addCustomer(); break;
case 2: removeCustomer(); break;
case 3: editCustomer(); break;
default: errorHandler();

}
Note the use of the ‘default’ if the case is not found. This is an optional part of the switch
statement. The “break’ clause acts like a ‘structured goto’ in that it sends control to the
end of the switch statement without evaluating any other cases. There is of course no
point in including a ‘break’ after the last option since it has no effect. It is important to
use ‘break’ after preceding options, since without it the switch statement will not
function correctly.

lteration

Iteration can be achieved in three slightly different ways
1. The ‘for’ loop

2. The ‘while’ loop

3. The ‘do...while’ loop

In each case, there will be a condition which allows the loop to terminate. Which one to
use depends on a number of factors, and each will be explained in terms of examples.

The for loop

The “for” loop has three principal elements:

1. The start condition

2. The terminating (while) condition

3. The action which takes place at the end of each iteration
The format is as follows:

for(start condition; ‘while’ condition; action)
// followed by a statement, or a block of statements in braces

Note that the three parts of the statement are enclosed in brackets following the word
‘for” and that they are separated by semicolons.

47

3 Getting to grips with Ci+

The following example uses a ‘for’ loop to print out the squares of the numbers 1 to 10.
The square is evaluated here in the ‘cout’ statement, though it could of course be evalu-
ated separately, and the result displayed. Note that the terminating condition is a ‘while’
condition — the loop finishes when it becomes false.

inti;

for(i=1;i<=10; i++)

{

}

Remember that “i++ is simply a shorthand form of ‘i =1 + 1". Another aspect of the “for’
loop is that we can declare the initial variable inside the statement itself, so that rather
than declaring ‘i’ before the loop, as we did in the above example, we might equally have
written:

cout << "The square of " <<i<<"is " <<i*i<<endl;

for(inti=1;...

In this context, the scope of ‘i’ remains exactly the same as if it had been declared outside
the “for’ statement.

The while and do...while Iloops

These loops are very similar in that both execute until a given condition is false (i.e.
while it is true), but there is one key difference between them. the ‘while” loop tests for a
precondition, which is to say that the condition for executing the loop is evaluated at the
beginning of each loop. In contrast, the “do..while’ loop tests for a postcondition, so that
the condition is evaluated at the end of each loop. This means that the ‘do..while’ loop
executes at least once, whereas the ‘while’ loop may not execute at all if the condition is
already false. The ‘while’ loop therefore is a true iteration (i.e. it executes 0 or more times)
whereas the ‘do...while’ loop is a repetition (it executes 1 or more times). Which one you
choose in a particular application depends entirely on the context.

The while loop
The “while” loop has the following syntax:

while(condition)
statement(s)...
As with all block structures, if there is more than one statement then braces must be
used. The following example uses a ‘while’ loop to display the numbers 1 to 10 using the
increment operator {(++)

intx=1;
while(x <= 10)
{

cout<<x<<"";
Xt}

48

3 Getting to grips with C++

The do...while loop
Similarly, the “do...while” loop has this syntax

do
{

statement(s)
} while (condition);

Note the semicolon which must follow a ‘do..while” statement.

A similar example to that used for the “while’ loop looks like this:
intx=1;
do
{

cout << x << "
X}
} while(x <= 10);
In this case, the two loops are interchangeable in terms of output, but if we had set the
initial value of X’ to 11 before each loop, only the “do...while” loop would have executed,
since the ‘while’ loop would already have evaluated the condition as false before the first
iteration.

Question 3.7 What criteria would you apply in deciding which of the three forms of loop
to use in a program?@

The choice between a ‘while’ and a ‘do...while’ loop depends on whether a frue iteration is required (the loop
executes O or more times) or a loop which will always execute at least once. A “for’ loop is appropriate where
the number of iterations is known beforehand, and/or where it is appropriate to have an infegral counter.

An example program

The first part of this chapter finished with a simple program which added two numbers.
This program draws together a number of the features covered in the second part of the
chapter, namely an array of characters, an ‘if” statement and “for’ and ‘do...while’ loops.
By calling a function which identifies characters relating to digits in the ASCII table (i.e.
the characters 0 - 9), it counts the number of digits in a string.

#include <iostream.h>

// Define a function which returns true (1) if the parameter character
/l'is in the ascii range 48 to 57 (ie a digit), false (0) if it is not

int isADigit(char c)

{
if(c >= 48 && ¢ <= 57)
{
return 1;
}
else
{
return 0;
}
}
// main tests the function
void main()
{

// declare variables

49

3 Getting to grips with C++

char buffer[80];
int digit_count;
char answer;
// loop until the user terminates the program
do
{
digit_count = 0;
cout << "Enter a string of characters ";
cin >> buffer;
/I loop through the string, counting digits
for(int i = 0; buffer[i] '= \0’; i++)

if(isADigit(buffer[i]))
{

}

digit_count++;

}
// display the result
cout << "Total number of digits in string = " << digit_count << endl;
cout << "Try another string (Y/N)? ";
cin >> answer;
cout << endl;
} while (answer != ‘n’ && answer = ‘N’);

}

An example test run follows:

Enter a string of characters Abcd4drs
Total number of digits in string = 2
Try another string (Y/N)? y

Enter a string of characters 999
Total number of digits in string = 3
Try another string (Y/N)? y

Enter a string of characters C++
Total number of digits in string = 0
Try another string (Y/N)? n

Summary

The two parts of this chapter have covered all the basic tools needed to build C++
programs. With this syntax knowledge, you should be equipped to deal with the exam-
ples and exercises in this book. Other elements of C++ syntax, particularly those specific
to the application of object-oriented programming, will be introduced throughout the
forthcoming chapters. However, there will be many aspects of the language not covered
here, and you may wish to pursue your C++ knowledge further with a more compre-
hensive syntax reference. There are many books on the market designed to provide an
in-depth reference to C++, for example Stroustrup’s definitive “The C++ Programming
Language’ [Stroustrup, 1995]. However, you may also find it useful to look at books
written for particular compilers which will cover issues such as graphics functions and
interface class libraries. Since these are vendor-specific they are beyond the scope of a
‘standard C++" text.

50

3 Getting fo grips with C++

Exercises

1.

Use the ‘swap’ function (below) to sort an array of 10 integers. Size the array with a
constant.
void swap (int& first, int& second)

{
int temp;
temp = first;
first = second;
second = temp;
}
Write a program which will accept a string of up to 10 characters from the keyboard,
and count the occurrences of each of the 5 vowels in the string. The output should be

in a (tabbed) format similar to this example:

Vowel counts are as follows:
A E I (o} u
0 1 0 0 1

Remember that a ‘string’ in C++ is terminated by the “\ (" escape sequence character.

C++ includes an operator called “sizeof” that returns the size (in bytes) of a data type.
For example:

char c;
cout << sizeof(c);

will display the size of a “‘char’ variable.

Write a program to test the sizes of the data types listed on p.21. Try ‘sizeof’ with an
array of ten chars, and an array of ten integers. What is the difference and why?

51

4 Modelling the real world

Overview

This chapter is about how we can build abstract models in programs of things in the real
world. It discusses how encapsulation links together data and processes, how informa-
tion hiding limits external access to internal data and processes, and what an abstract
data type is. It explains that the three components of an abstract data type are a unique
name, attributes and methods. The syntax for the C++ class is outlined with examples.

Encapsulation

The most important aspect of an object-oriented software system is that it links together
data and the operations that are performed on that data. The reason why this is seen as
an advantage in programming is that it reflects objects in the real world and, after all, it
is people in the real world that programs are intended to serve.

Any ‘real world’ object we choose to investigate can be described in terms of what it is
called (its identity), what it is (its state) and what it does (its behaviour). If we pick up a
coffee cup, we might say that it has a name (‘coffee cup’), a state (it may be white, hot,
full etc.) and has certain fixed behaviour (it can be manufactured, filled, drunk from,
carried, washed and broken, for example). These elements are all ‘encapsulated” into one
object — we cannot divorce any one from the others. For example, the state of being full is
irrevocably linked to the behaviour of being filled — we cannot separate the two. If the
cup has not been filled then it cannot be full. It is this kind of link between data (‘what it
is’) and operations (‘what it does’) that things in the real world have that we are seeking
to reflect with object-oriented software.

Question 4.1 What two aspects of an ‘object’ are linked together by encapsulation?

Encapsulation is based on the linking together of an object’s state and behaviour.

Information hiding

52

We have defined the term ‘encapsulation’ as meaning that we represent in software
some kind of unit which, like real world objects, has both state and behaviour. This inte-
gration of state and behaviour allows us to implement ‘information hiding’ (a term first
coined by David Parnas in 1972). Which means that encapsulation hides private
elements of an object behind a public interface. This separation between the public and
private parts of an encapsulated object has two aspects — protection of the object’s state
from unforeseen external influences, and hiding of the implementation details used to
define an object’s behaviour.

Firstly, then, ‘information hiding’ means that an object’s state cannot be altered except by
its fixed methods of behaviour. This is crucial, because we are trying to protect the state
data inside an object from being changed by unpredictable external influences. If we take
the coffee cup example (Fig. 4.1), we can say that it has a state of ‘fullness’ (how much
coffee is in the cup). Unless we resort to conjuring tricks, this state can only be affected
by specific operations: being filled (from kettle, jug etc.) or being emptied, (drunk or
spilled). No other external effect can change the state of ‘fullness’. The protection of state

4 Modelling the real world

data is something which object-orientation provides us with in software. In effect, when
programming we need the security of knowing that data in our program won't suddenly
change state because of some apparently unconnected external event, with the same
conviction that we know our coffee cup won’t suddenly turn from white to black
because the sun has gone behind a cloud.

Fig. 4.1: A coffee cup encapsulates
both its state and its behaviour. This
one may be full and cold. An
appropriate behaviour in this state
may be to be emptied down the sink!

Question 4.2 In the above example, a coffee cup is used as an example of a simple
object with state and behaviour. Can you suggest states and behaviours
which might apply to a retractable ball point pen?

Possible states might be: full, empty, nib out, nib in etc. Possible behaviours might be: write, refill, retract, propel,
leak down front of shirt etc.

This protection of state data behind a ‘fire wall’ of fixed behaviour makes the life of the
programmer easier because it means that the behaviour of software is predictable and
less prone to error. It enhances reusability and maintainability because we only have to
be aware of an object’s interface, not its internal structures.

The second aspect of information hiding is that we do not need to know how behaviour
happens, only that it does. In software, what goes on inside the programming unit which
represents an object is not relevant to the user. We don’t need to know how the manufac-
turer made our coffee cup white — we only need to know that it is white so that it will
match our kitchen. This “public’ view of the cup would be unaffected by any change in
the manufacturer’s process which is ‘private’ — hidden from the user. In the same way,
the behaviour of a software ‘object’ should be unaffected by changes in its internal
implementation.

The way in which encapsulation allows information hiding to be applied is often
described in terms of a ‘doughnut’ diagram (Fig. 4.2) - the private state is hidden behind
the surrounding public interface, which represents that behaviour which is externally
visible, From ‘outside’ the object, we cannot see the private, internal elements. What
constitutes the public interface is defined in the ‘abstract data type’ (below). In fact, a jam
doughnut is a better analogy than a ring, since its internal state is hidden!

53

4 Modelling the real world

Public Interface

Private State

Fig. 4.2: ‘Doughnut’ diagram of a hidden,
private state behind the public intexface.

Question 4.3 What is being hidden when we talk about information hiding?

We can make a distinction between two kinds of information which is being hidden by information hiding. One
is the hiding of state data behind a ‘public’ interface of fixed behaviour, which is made possible by
encapsulation. The other is the hiding of implementation details from the user. As well as state data, these include
the data structures and algorithms used to create a software ‘object’s’ behaviour.

Abstract data types

54

When using the coffee cup as an example of an object, we assume that we are looking at
a particular coffee cup, and are evaluating its particular state and behaviour. However,
we are able to identify it as a coffee cup because it is one of many which we recognise as
being of a particular type of object. We know the possibilities for the state and behaviour
of a particular coffee cup because in fact it shares these with all other coffee cups. Itis this
commonality of possible states and behaviours which allows us to ‘classify’ objects as
belonging to particular groups, or ‘classes’, and when we try to model objects in soft-
ware, we do so by defining the possible states and behaviours of all objects of a partic-
ular type. The vehicle for doing this is the ‘abstract data type’.

Anyone who has any degree of programming experience will understand what is meant
by the term “data type’. It defines the type of data which a particular variable can hold -
it may be an integer, a character, a float, or any of a range of simple data storage repre-
sentations. However, when we build object-oriented systems, we use more complex data
types, known as ‘abstract data types’, which represent more realistic (more worldly)
entities. Whereas the ‘integer’ data type defines how all integer numbers are handled in
a program (how they are stored and what operations they can undergo), we might be
interested in representing a ‘bank account’ data type, which describes how all bank
accounts are handled in a program (again, how they are stored and what operations they
can undergo).

Abstraction is about reducing complexity, ignoring unnecessary detail. An abstract
representation of something is supposed to contain the essential features of what is being
represented. A realistic painting contains all the details seen by the eye, whereas an
abstract painting intends to reflect the essential features of what is being seen. Unfortu-

4 Modelling the real world

nately that meaning is not necessarily communicated to the viewer of the picture! A
more appropriate example might be a map. Only the essential features of an area are
shown on a map ~ it is not just an aerial photograph. Important elements are clearly
shown, unimportant ones are ignored.

Question 4.4 What do you think are the essential features of a ‘Person’ which we might
include in an abstract data type?

Given that an abstract data type should represent the essential features of something, we might concentrate on
those which are most commonly used o identify individuals on official forms efc. These generally include name,
address, age, sex and occupation among others. On the other hand, we might look at it in the context of what
makes a person physically distinct, such as height, hair colour, skin colour, weight efc. Since we are always
ignoring unnecessary detail, an abstract data type is often shaped not only by the objects it represents but by the
context in which they are being used.

Another key point about an abstract data type is that it represents what is common
between all examples of that particular ‘thing’, not just an individual example. An
abstract data type for ‘coffee cup” would be a representation of all the things that are
common to all coffee cups, not just a particular one. This means that an abstract data
type contains no values, it only defines the types of data or data structures which
together will define the state of any object of that type.

Objects and classes

We have already referred to “objects’ as things in the real world, and used the example of
a coffee cup as a particular type of object. We instinctively classify objects in terms of
what we see as their types (e.g. a type of cat, a type of apple) based on the attributes and
behaviours they have in common. The term ‘classify’ gives us the idea of the ‘class’ — all
objects belong to a particular class of object. The common elements of a set of objects
which allow us to classify them are those which we try to encompass in an abstract data
type. Indeed C++ uses the word “class’ to describe an abstract data type.

Attributes and methods
If we are to build an abstract data type in a program, we have to identify three things:
1. The abstract ‘thing’ we are trying to represent
2. The data which represents the state of that ‘thing’
3. The behaviour of that ‘thing’

The ‘thing” will be the name of the abstract data type (in our example above, ‘coffee
cup’). It may be worth stressing here that the “thing’ we are trying to define is not the
object, but a class of objects (the common aspects of all objects which we classify as being
of a particular type). The class will define the common attributes and methods for all
objects of the class (Fig. 4.3).

55

4 Modelling the real world

All coffee cups ...

... have common attributes ...

[have a colour ...
| have a temperature ...

.. and common methods ...

drink me ...
wash me ...

Fig. 3.3: All coffee cups have common state
attributes and behaviour methods.

Attributes

Having decided what our abstract data type is going to represent, we have tq identify
what elements go to make up its state. These are known as “attributes’ in object-oriented
terminology, but in programming terms are variables and/ or data structures (e.g. arrays,
lists etc.) It is important to note that when we identify attributes, we are not specifying
values for them. For example, we might decide that our data type must have the
attribute of “colour’, but we do not predetermine what that colour might be for any indi-
vidual coffee cup, only that all coffee cups will have a colour of some kind. This is exactly
analogous to deciding the record structure of a file or database table. When we define
fields in a record structure, we only specify their names and types, but the data held in
each field may be different for each actual record.

Methods

The behaviour of our ‘thing’ is going to be defined by its ‘methods’ (sometimes called
‘operations’ or ‘services’), which are processing routines related to the data type. In an
abstract data type, the methods act as the only path between the user and the state data
— it is normal practice to limit access to the data so that it can only be accessed via these
methods (‘information hiding’).

There are several types of method, but two in particular are relevant here:
1. ‘selector’ methods
2. ‘modifier’ methods

A ’selector’ method is a ‘read” method, one which allows access to the state of an object,
but does not allow that state to be altered. This is analogous to the traditional idea of a
function (data is unaffected by executing a function). It is also known as a ‘get’” method.
A ‘modifier’ method is a ‘write’ method, allowing state attributes to be altered. This is

56

4 Modelling the real world

analogous to the traditional idea of a procedure (data is changed when a procedure is
executed) and is also known as a “set’ method.

It is up to the designer of the abstract data type to decide which attributes may be read
by selector methods, and which may be altered by modifier methods. If an attribute has
no selector method, then to all intents and purposes it is ‘invisible” from outside the
abstract data type. If it has no modifier method then its state cannot be altered. In prac-
tice most attributes will have both ‘get’ and ‘set’ methods as a matter of course.

Modifier methods are not confined to setting individual attributes. Any method that
changes the state of an object, such as moving a window across a screen or starting a
timer, is a modifier.

Meyer [Meyer, 1988] uses the example of a simple ‘black box’ machine to highlight the
external (public) interface of an object, and the different types of method. Indeed the idea
of an object as a ‘(finite) state machine’ is often used in object-oriented terminology. The
machine has two types of button — “command’ (modifier) buttons and ‘query’ (selector)
buttons. Pushing a query button returns some state information from the machine, but
does not change the state. Therefore if the button is pushed ten times in a row, the same
result will be returned 10 times. Pushing a command button changes the state, so that the
next query about that state will produce a different result.

The example (Fig. 4.4) shows a ‘number box’ object which contains a collection of
numbers. Our (rather limited) selector methods which display the current state of the
object on the output screen will return either the current count of numbers in the
machine (the ‘count’ button), or the mean average of those numbers (the ‘mean’ button).
Neither of these methods will affect the data inside the machine. The two modifiers
allow numbers to be added to the set via the numeric keypad (the ‘add’ button) or will
delete all the numbers, leaving the box empty (the ‘delete’ button).

LBox of numberﬂ
]

Selectors Output D
| count | [MEAN |

11213
Modifiers 41516
| ApD | [DELETE | P ST T

0|~

Fig. 4.4: A '‘Number Box’ object seen as a state machine,
with selector and modifier operations.

Question 4.5 What type of method is able to alter the state of an object?

A ‘modifier’ method can alter the state of an object. In contrast, a ‘selector’ method may only return the value of
an object's attributes without altering its state.

57

4 Modelling the real world

The most important concept which the ‘black box” machine demonstrates is that the
interface of an object is all that we see ~ only the methods are at our disposal. What
happens inside the box is irrelevant to us. The object is seen as a hardware component —
unaffected by other hardware components save for messages passed to and from it. An
object-oriented software component has the same discrete nature — you can ‘plug itin’ to
a program and use it as you would plug an integrated circuit board into a computer.
Indeed, this analogy is the basis for the Brad Cox’s use of the term ‘software IC’
[Cox, 1986].

Having discussed the attribute and method aspects of an abstract data type, it may be
useful to return to our ‘doughnut’ diagram (Fig. 4.2) and think of it in terms of the
methods providing controlled gateways or doors to the attributes (Fig. 4.5).

When we come to look at the syntax for creating an abstract data type in C++, we are
aiming to achieve both a model of the type via its attributes and methods, and also to
ensure the correct relationship between them. Methods provide the tools for programs
which use the abstract data type to gather or manipulate data. Without methods, there is
no useable interface to the private attributes. In the coding examples which follow, we
will see that many of the external methods are derived naturally from the internal
attributes.

Fig. 4.5: Methods are doors to hidden attributes.
We may only access attributes via these methods.

C++ Syntax

Abstract Data Types Using Classes

This section of the chapter explains how an abstract data type can be represented using
the “class’ construct in C++.

Syntax introduced

58

In these examples, the following syntax is introduced which allows the creation of
abstract data types:

1. The ‘class’ keyword for defining a class (abstract data type).

2. The "private’” keyword, which defines the ‘hidden’ part of the class.
3. The “public:’ keyword, which defines the visible interface of the class.
4

The “scope resolution operator’ — a double colon (::) used to link together classes and
the definition of their methods.

4 Modelling the real world

The class in C++

In C++ we model an abstract data type by using the ‘class’. The class has two parts;
‘private” and ‘public’. The private part of a class contains any elements which are to be
hidden from public access. The public part of the class defines the ‘behaviour’ (methods)
of any object of the class. In a program, a behaviour means a process which the object is
able to perform or undergo.

It is normal practice to put attributes into the private part of the class, where they can
only be accessed via methods. Methods themselves appear in the public part of the class
so they can be accessed externally and provide the interface to the class. It is possible
(though not usually appropriate, since it undermines the principles of encapsulation) to
put attributes in the public part of the class. It is also possible to put methods in the
private part of the class. This is useful for methods which are used by other methods of
the same class, but not appropriate as part of the external interface. In the following
examples, attributes are private and methods are public.

The syntax of a class (here called ‘ExampleClass’) in C-++ is as follows:

/1 first, the keyword ‘class’ is used, followed by the name of the class,
/I then the opening brace as used for all block structures in C++
class ExampleClass

{

/I the keyword ‘private’ is used to define the subsequent attributes as private
private:
/I aprivate attribute is declared (a single integer called)
inti;
/I the keyword ‘public’ is used before the methods
public:
/I a public method called setValue which sets the value of the
/I attribute 7" using an integer parameter
void setValue(int value_in)

{

i = value_in;

/I a public method cailed getValue which returns the attribute ¥’
int getValue()

return i;
b

Notes

* A class definition is terminated with a semicolon, unlike a function definition.

* The members of a class are private by default, so the keyword "private’ could be
omitted. The integer variable ‘i’ is private and therefore inaccessible from outside the
class, except indirectly via the ‘setValue’ and “getValue’ methods.

* Methods are usually known as ‘member functions’ in C++. The member functions
‘setValue’ and ‘getValue” are defined “inline’ (inside the class definition) in this case.
‘setValue’ is of “void’ type because it has no return value. ‘getValue’ is of ‘int’ type
because it returns the value of the integer attribute.

59

4 Modelling the real world

Classes - declaring methods

60

In the above example, the definitions of the two methods appear inside the body of the
class. This makes them ‘inline’ methods, which in practice means that the implementa-
tion code (the body of the method) will be duplicated for every object we create of this
class. While this is perfectly acceptable for simple methods, it is not appropriate to define
them inline when they are more than two lines long because of the potential memory
requirements. In fact the compiler will not allow anything other than very short and
simple methods to be defined inline. In most cases, methods must be prototyped
(declared) inside the class, with their definitions given outside the class using the double
colon ‘scope resolution operator’ (::) as follows:

return_type Class_name :: method_name(parameter list...)

The scope resolution operator tells the compiler that the method belongs to the named
class, even though it has been defined outside the class body.

The effect of this is that only one version of the method exists at run time, accessible to all
objects of the class. When defining methods out of line, the return type of the method
appears to the left of the class name. The previously described class is defined here with
its methods out of line:

// the class body is defined, including method prototypes but not
/[definitions
class ExampleClass
{
private:
inti;
public:
// only the ‘function prototypes’ of the methods appear in the class body
void setValue(int value_in);
int getValue();
S
// outside the class itself, the ‘setValue’ and ‘getValue’ methods are defined
void ExampleClass::setValue(int value_in)

{

i = value_in;

int ExampleClass::getValue()

{
}

Note that the method definitions, unlike the class definition, do not end in a semicolon.

return i;

The “ExampleClass” shows the essential features of the syntax, but does not provide a
useful abstract data type. All we could do with it would be to set and return the value of
an integer. As a more realistic example, we will create a class called ‘BankAccount’ which
will have the following attributes:

account number

account holder
current balance

PO

4 Modelling the real world

It will have the following methods:

Selector methods:

get account number
get account holder
get balance

Modifier methods:

set account number
set account holder
deposit

withdrawal

We might usefully put these together into a simple diagram typical of object-oriented
design notations (e.g. those used by [Coad/Yourdon, 1990] and [Rumbaugh et al, 1991]).
This contains the name of the class, followed by its attributes and finally its methods,

using a divided rectangle:

The class might be implemented in C-++ as shown below.

Note the following:

Bank Account

account number
account holder
current balance

get account number
get account holder
get current balance
set account number
set account holder
deposit

withdrawal

o The attributes must have types (int, char* and float in this case)

¢ The methods must also have return types. Selector methods usually have a specific

return type, whereas modifier methods are often void.

* ltis good practice (though it makes no actual difference to the compiler) to group
selector operations, followed by the modifier operations, as shown here.

#include <string.h> // for the ‘strncpy’ library function

class BankAccount

{

/I the private attributes come first

private:
int account_number;

char account_holder[20];
float current_balance;

/I followed by the public methods

public:
/I selector (get) methods

61

4 Modelling the real world

62

int getAccountNumber();

char* getAccountHolder();

float getCurrentBalance();
/' modifier (set) methods

void setAccountNumber(int number_in);

void setAccountHolder(char* holder_in);

void deposit(float amount);

void withdrawal{float amount);
I
/' now we define the function bodies for each of the methods;
// getAccountNumber returns the integer account number
int BankAccount::getAccountNumber()

{
}

/I getAccountHolder returns the name of the account holder
char* BankAccount::getAccountHolder()

{
}

/I getCurrentBalance returns the current account balance (a float)
float BankAccount::getCurrentBalance()

{
}

/I setAccountNumber sets the account number from the integer parameter
void BankAccount::setAccountNumber(int number_in)

{
}

/I setAccountHolder sets the name of the holder from the char* parameter
void BankAccount::setAccountHolder(char* holder_in)

{

return account_number;

return account_holder;

return current_balance;

account_number = number_in;

strncpy(account_holder, holder_in, 19);

account_holder{19] = \0’;
}
// deposit allows a parameter value to be added to the current balance
void BankAccount::deposit(float amount)

{
}

// withdrawal allows a parameter value to be subtracted from the balance
void BankAccount::withdrawal(float amount)

{
}

current_balance = current_balance + amount;

current_balance = current_balance — amount;

With the Bank Account class we have modelled a simple bank account as an abstract data
type, providing the attributes and methods necessary to hold and update state data for
any bank account created using this data type. However, so far we have not done
anything beyond the definition of the abstract data type — it has not been ‘used in anger’.
We have not as yet created anything which could be regarded as a program. We have,
rather, created the definition of a data type which could be used to make objects in any
number of programs. In order to do this effectively, we will need to store it in a header
file (i.e. a “.h’ file, for example ‘bankaccth’) which may be included in subsequent
programs which process bank accounts. We could put both the class definition and a

(S,

4 Modelling the real world

program into the same file (and indeed many of the examples in this book are written
this way), but putting the class into a separate header file is necessary if we need to use
it in more than one program.

Whenever we create new abstract data types and store them in header files, we are
adding to a potential library, allowing us to create objects of any predefined class.
However, user-created header files are usually included in a program using a different
syntax to that used when including header files provided with the compiler. When
including header files in previous examples, we used the following syntax:

#include <header_name.h>
Examples seen so far are:

#include <string.h>
#include <iostream.h>

In contrast, user-defined header files are usually included using the following syntax:
#include "header_name.h"

The only difference is in fact to do with the location of the files. The compiler expects to
find header files enclosed in " " characters in a local drive, whereas those enclosed in < >
characters it will look for in its usual library directory. In theory, either syntax will work
for any type of header file, but sometimes in practice this is not the case (for example
over a network). To include our bank account header file in a program we might there-
fore have something like the following at the beginning of our source code:

#include "bankacct.h"

In the next chapter, we will see how the bank account class can be included in this way in
a simple program to create bank account objects and test their behaviour.

Summary of key concepts from this chapter
1. Encapsulation is the combination of state and behaviour into a software ‘object’.

2. ‘Information hiding’ is the division of an object into private and public parts. The
public part provides the external interface. The private part (and all internal
processes) are ‘hidden’ inside the object.

3. An abstract data type defines the attributes (state) and methods (behaviour) of all
objects belonging to a particular “class’.

4. We may make a distinction between “selector’ methods (which access attributes but
cannot change them) and ‘modifier’ methods (which are able to change the state of
attributes).

5. In C++, we use the ‘class’ to model abstract data types. The keywords ‘public’ and
‘private’ are used to define the class interface and hidden part respectively. The
scope resolution operator (double colon) is used to link member functions (methods)
to the class.

63

4 Modelling the real world

Exercises

Put your answers to these exercises in header files (with a “.h’ extension). To test them,
read Chapter 5 up to the example program on page 71 and use this as a model for your
test programs.

64

1.

Consider the attributes and methods suggested for the coffee cup in the preceding
chapter. Using the notation previously shown (the divided rectangle), list the name,
attributes and methods which would apply to a ‘coffee cup’ abstract data type. Add
any you can think of which have not already been mentioned.

Suggest attributes and methods for a ‘wallet/ purse” abstract data type. Think about
what you need a wallet or purse for (what its behaviour is) and what internal attrib-
utes relate to these behaviours. Bear in mind that there is no single ‘right answer’ for
this kind of abstract exercise.

Question 4.4 referred to a ‘Person’ abstract data type. Create a C++ class to represent
a person with attributes of name, year of birth and height in metres. Define methods
to get and set these three attributes. Add a method which will return a person’s
(approximate) age when given a year as a parameter. Add another method which
will return their height in centimetres. These values may be derived from the given
attributes. Do not add extra attributes to the class.

Create a C++ class for a “Stockltem’ abstract data type. It should have the attributes
of stock level (an integer) and unit price (a float). Define methods to return the values
of these two attributes and to set them using parameters. Add two more methods to
allow stock receipts, and stock issues, updating the stock level as appropriate.

3 Classes and objects

Overview

In this chapter we will look at the differences between classes and objects. We will
examine what is meant by the three elements of an object, namely identity, state and
behaviour. Instantiation of objects is demonstrated in C++, along with the use of the
various types of constructor method. The syntax for sending a message to an object (i.e.
using a method) is outlined.

What is a class, what is an object?

In the previous chapter, we began by discussing a specific object, (a coffee cup) and
ended by describing an abstract data type (for a bank account) which defined the class to
which all ‘BankAccount” objects belong.

What then is the relationship between a class (described by an abstract data type) and
objects of that class?

The role of the class is to act as a kind of blueprint for all the objects of that type. A class
defines the types of state data appropriate to the class (the attributes), and also its set of
allowed behaviours (the methods). The class is in effect an ‘object factory’ which allows
us to create new objects of the class, each one of which follows an identical pattern of
attributes and methods. A single abstract data type is used to create as many instances of
the class as we wish, in the same way that a single simple data type (such as the type
‘integer”) can be used to create many instances of that type.

Question 5.1 What are the similarities and differences between a simple data type {like
integer) and an abstract data type (like bank account)?

Both simple and abstract data types define the behaviours of a single set of data. However, for the integer there
is only one attribute {the integer value) and a limited set of behaviours {adding, subtracting etc] defined by the
language syntax we are using. Abstract data types may have many attributes, and many behaviours which we
are able to define ourselves.

It might be useful to think of the class as, for example, a machine like one which makes
security badges for visitors to a company. The machine makes a standard pattern of
badge (printed cardboard insert, plastic cover, pin) and defines the required attributes
for each one such as the visitor’s name, their own employer and the person they are
visiting, perhaps even a photo of the visitor. Each badge which the machine makes is an
object — a single ‘instance * of the class — and it is each badge which contains the ‘state’
data for the attributes defined by the class. The class contains the attributes, but it is the
objects which actually contain the state data (the person’s name, their photograph etc.).
Each badge will have a standard behaviour — a standard set of methods defined by the
class. Note that these are not different for each object. If the “class machine’ fixes a safety
pin onto the back of the badge, then it will have the methods of being put on and taken
off etc, and all objects will have exactly the same behaviour, even though their state data
is different (Fig. 5.1).

65

5 Classes and objects

Class)
Security Badge

A. Kamell
L
Security Badge
Badge -
/_’\vv_/v
Object A. Dinosaw W
Machine Security Badge
A. Swann \ ‘/
Lake & Co ‘
J

Fig. 5.1: The class acts like an object machine.
This class machine manufactures ‘badge’ objects.

Each object created by the class is a single “instance’ of that class, and this is why the term
‘instantiation’ is used in object-orjented terminology. ‘Instantiation” means the creation
of a single instance of a class —i.e. an object.

Question 5.2 What may be different for all objects in a class, and what remains the
same?

All the objects in a class may have different attribute values (state data), but their allowed behaviours are all the
same.

State, identity and behaviour

66

In the previous chapter, we stated that a class is defined by three elements:
1. A unique name
2. Attributes

3. Methods

In contrast, an object is defined by:
1. Identity

2. State

3. Behaviour

In each of these three cases, the property of the class relates in some way to the property
of the object (Fig. 5.2). The attributes of the class allow each object to contain state data —
one value for each attribute. The methods of the class define the possible behaviours of
the object. However, the concept of identity is slightly more complex than the name of
the class.

5 Classes and objects

OBJECT

Identity
State
Behaviour

CLASS OBJECT

Name Identity
Attributes State
Methods Behaviour

OBJECT

[dentity
State
Behaviour

Fig. 5.2: Classes are identified by a unique name, and embody
attributes and methods. Objects have identity, state and behaviour.

It is possible for a specific object to be identified by a unique name. In an oilfield control
system for example there might be a fixed and limited number of individual oil pumps,
each one easily identifiable by a unique name, e.g. ‘Oil Pump 1’, “Oil Pump 2’ etc.
However, this simplicity of identity is not always the case. In some situations, there are
many objects constantly being created and destroyed. If it is raining, what identifies each
raindrop? It would be absurd to suggest that we could name every raindrop, but each
does exist and therefore must have some kind of unique identity. In some cases, the idea
that each object can have a unique name falls down. What in fact differentiates one rain-
drop from another is simply the space that it occupies at a particular time. The identity of
any object may be ultimately definable only by this space/time relationship (Fig. 5.3). In
object-oriented programs which have to keep track of a large number of objects which
are constantly being instantiated and destroyed, objects will be identified by their
memory locations rather than by unique names. Objects which are predictable are iden-
tified, like classes, by unique names, but objects which are unpredictable are identified
by location.

67

5 Classes and objects

Oil Pump 3

Fig. 5.3: Objects of predictable number and lifetimes (like oil pumps)
have unique names. Unpredictable objects (like raindrops) are
identified by the space and time they occupy.

It is sometimes possible to differentiate objects by key attributes, in the same way that
records in an indexed file or database table can be accessed by some unique data field(s).
However, this is not what is meant by object identity, and it is perfectly possible for more
than one object to have identical state values for all attributes.

Question 5.3 What is the difference between the name of a class and the identity of an
object?

Each class has a single unique name which identifies a particular abstract data type. An object may have a
unique name, or a unique data ‘key’, but its identity may ultimately be defined only by the memory location which
it occupies at a particular time. ‘

The key differences between a class and its objects may be summarised as follows:

* Once we have defined a class, it exists all the time a program is running, whereas
objects may be created and destroyed at run time.

* For a single class, there may be any number of objects instantiated at any one time
(possibly no objects at all).

* A class has a unique name, attributes and methods. An object has identity, state and
behaviour.

* A class provides no state values for the object attributes. These can only be given
values when applied to specific objects.

Constructors

When we instantiate an object in a program, there are certain processes which must take
place. As we noted above, objects must have a unique identity, which is ultimately
defined by the space which that object occupies at a particular time. In a program, this

68

5 Classes and objects

means memory space, and instantiation of an object always involves reserving enough
memory for the state data of that object. It does not have to reserve memory for the
methods since, unlike the attribute values, these are consistent for all objects of the class.
Therefore they only need to exist once for the class, not once for every object. The excep-
tion to this is very short methods which may be declared ‘inline’ — inside the body of the
class itself. Inline methods are duplicated for every object. This is purely an implementa-
tion detail of C++, and does not affect the general principle that methods are an identical
set shared between all objects in the class.

The special method which reserves memory for a newly instantiated object is known as
the “constructor’. In addition to the reservation of memory space, the constructor may
also be extended to include other processes such as the initialisation of the state data of
the object.

. Question 5.4 What is the primary role of the constructorg

To reserve memory for a newly instantiated object.

There are three basic kinds of constructor:
1. the default constructor
2. user-defined constructors

3. the copy constructor

The default constructor

The default constructor takes no parameters, and performs no processing other than the
reservation of memory. It will always be called by the compiler if no user defined
constructor is provided. The default constructor is not referred to by the programmer in
the class definition.

User defined constructors

If parameters or initialisation processing are required when an object is created, then the
programmer has to define a constructor method explicitly. It is possible to have more
than one constructor in a class providing that the different versions are defined by differ-
ences in the parameter list. This is known as ‘overloading’ and gives more flexibility to
the ways in which an object may be instantiated (see Chapter 12).

The copy constructor

A copy constructor is a simple concept, since it is really a way of using the assignment
(=) operator when creating new objects. It allows us to express things like:
new_object object2 = object1

i.e. the new object is to be equal to the existing object.

The copy constructor allows us to instantiate an object as an exact copy of another in
terms of its attribute values — in the example above, the attribute values of ‘object2’ on
instantiation would be copied from those of “objectl’. The only difference between the
objects will be their identities since their states and behaviours will be the same until one
or other changes state. The default copy constructor can be used on any objects without
being explicitly defined, though it is possible to provide a user defined copy constructor

69

5 Classes and objects

if additional processing is required, or if the default behaviour is inappropriate, perhaps
because the objects contain pointers. Since the default copy constructor copies pointer
addresses rather than the data they reference, we may in some cases have to override this
behaviour. '

C++ syntax

Instantiating objects

In order to instantiate objects, we need to call on an abstract data type — a ‘class” in C++.
As we know, each class has a unique name by which it may be identified. For the
moment we will also only be creating objects which have unique names. The syntax for
creating objects without unique names will be explained in the next chapter. Objects
instantiated with unique names are those whose lifetimes and identities are predictable
at compile time.

For the examples which follow, we will be using the ‘BankAccount’ class as described in
Chapter 4, so code examples assume the inclusion of our header file ‘bankacct.h’.

An object is instantiated in C++ by declaring its type, followed by its name, just like
other data types, e.g.

int x; // an instance of type ‘int
chary; // an instance of type ‘char’
BankAccount z; // an instance of type ‘BankAccount’

When we declare ‘X’ to be of type integer, it means that we can treat ‘x’ in the same way
as any other integer, and perform integer arithmetic on it. By declaring 2" to be of type
‘BankAccount’, we likewise treat z as any other BankAccount, which means it will have
the attributes and methods defined by the class.

Creating multiple objects

One of the most important aspects of creating objects of a class is that there can be as
many objects of that class instantiated as may be needed. For example, we might create
three bank accounts as follows:

BankAccount accountt;

BankAccount account2;

BankAccount account3;
Any of these three objects may now ‘receive messages’, which means that they can
respond to use of their methods.

‘Sending messages’ by using methods

70

A class, as we know, is divided into two parts, the “private’ part (which is hidden from
the outside, and contains the state values) and the ‘public’ part (which usually contains
the methods). These public methods are the only things which we can use in association
with an object of the class. There is no direct access to the private elements.

When an object is identified by a unique name, anything in the public part of the class
(usually methods) can be called by putting a period (the ‘dot operator’) between the
name of the object and the method, e.g.:

accounti.setAccountNumber(100);

5 Classes and objects

This calls the ‘setAccountNumber’” method for the class to which “accountl’ belongs (in
this case the ‘BankAccount’ class), and sets the private attribute “account_number” to
100. Note that the method requires an integer parameter to do this. Calling a method of
an object is known as ‘sending a message’. In the example above, the message ‘setAc-
countNumber’ is sent to the object ‘accountl’.

The only messages which we can send to an object are those defined as methods in the
public part of the class. Nothing in the private part of the class can be accessed via the
dot operator (or any other operator). We cannot, for example, do this:

accounti.account_number = 100; // invalid reference to private attribute

This is not allowed, since ‘account_number’ is private, and the dot operator can only
access public elements of the class.

Any instantiated object can be sent messages using the dot operator. In the following
example, three account objects are instantiated (note that we can declare them all in one
statement if we wish, just like simple data types), have their account numbers set, and
then displayed by calling the appropriate methods.

#include “bankacct.h”
#include <iostream.h>
void main()

{

BankAccount account1, account2, account3;
account1.setAccountNumber(100);
account2.setAccountNumber(110);
account3.setAccountNumber(120);

cout << “Account Numbers Are:” << endl;

cout << accounti.getAccountNumber() << endl;
cout << account2.getAccountNumber() << endl;
cout << account3.getAccountNumber() << endl;

}
The output from this program should be:

Account Numbers Are:
100
110
120

Calling the constructor

We stated previously that whenever an object is instantiated, a method known as the
‘constructor’ is called to reserve memory for that object. Whether or not we explicitly
define it, the constructor is called automatically by the compiler when an instance of an
object is created. When for example we write ‘BankAccount accountl’ to instantiate
‘accountl’, we are implicitly calling the constructor.

Limitations of the default constructor

A default constructor is called if no user-defined constructor is provided in the class defi-
nition, but it has limited application since it only allocates memory for the object being
instantiated. It is not possible to pass any parameters to the default constructor, nor to
make it perform or call any other processes. However, it may in practice be appropriate
when creating an object to perform some initial processing, such as giving initial state

71

5 Classes and objects

values to some or all of the attributes. We can do this by writing a user defined
constructor method, possibly with parameters, replacing the default version. Although
initialisation processes do not have to be put into a constructor (a separate method could
be written to do this), the advantage is that the constructor does not have to be explicitly
called when creating an object, as any other method would have to be.

A user defined constructor

As noted above, if we define our own constructor there is no need to call a separate
initialisation function when creating objects — since any object will have a constructor, all
initialisation processing can be put into it. It is important to note that when providing
our own constructor, we do not have to WOorry about the reservation of memory for the
object. That crucial role of the default constructor is automatically (and invisibly)
included even when we define our own.

Coding a constructor
An object constructor in C-++ has three important aspects:
1. It takes the same name as the class
2. Itmay take arguments

3. It cannot return a value

The consiructor prototype

Since the name of a constructor is the same as that of the class, then a constructor for the
‘BankAccount’ class would also be called ‘BankAccount’. Its prototype would therefore
appear in the class definition (in our header file) as follows:

class BankAccount

{

public:
BankAccount();

b

Note that since the constructor cannot return a value, it has no return type and no type
can be stated. This is an important distinction between the constructor and other
methods — C++ functions normally require a return type, which defaults to ‘int’ if none is
stated.

Defining the constructor out-of-line

To define a constructor out of line, we use the scope resolution operator as usual to sepa-
rate the class name and the method name. Of course, for a constructor these names are
identical, as the following example (assuming a class called ‘Object’) demonstrates:

Object :: Object()
{

// constructor definition

}

What then might a user-defined constructor such as this do? Its typical role would be to
initialise the state of objects when they are created. In the case of the BankAccount class,

72

5 Classes and objects

a likely initialisation process would be to set the “current_balance’ attribute to zero, since
it will otherwise contain a garbage value. (This could cause our ‘deposit’ and ‘with-
drawal’ methods to produce some strange results.) Of course, we could have a separate
method to do this, but it would have to be called explicitly by the programmer. By doing
it in the constructor we ‘kill two birds with one stone’. Our out-of-line constructor defin-
ition (added to the methods in the header file) might be:

BankAccount :: BankAccount()

{

current_balance = 0.00;
}
A user defined constructor such as this can therefore perform any processes which are
appropriate to the instantiation of an object.

Parameterised construciors

The previous example has no parameters, but it is also possible to pass parameter argu-
ments to a user-defined constructor. This gives us the opportunity to create objects with
different initial states dependent on the parameters which are passed when the
constructor is called. In the case of a newly created bank account, we might wish to set
the initial balance to values other than zero (after all, banks don’t usually let you open
accounts with no money!). The prototype of a constructor taking such a parameter might
be:

BankAccount(float start_balance);
and it could use the parameter to set the initial value of the current balance as follows:

BankAccount::BankAccount(float start_balance)

{

current_balance = start_balance;
}
If we have this constructor declared, then whenever we create an instance of the bank
account class, we have to supply a parameter argument — the default constructor which
takes no arguments is no longer available to us, having been replaced by our user-
defined constructor. A BankAccount object can therefore only be created with a float
value provided as an argument, e.g.:

BankAccount account1(100.00);
This creates a BankAccount object with an initial balance of £100.00.

Default parameter values

What if we want to be able to instantiate objects with a parameter some of the time, but
not always? One way in which this can be achieved is by the use of default values for
parameter arguments. Any single parameter to a method (or function) can be given a
default value in C++, for example we can give ‘start_balance’ a default value of zero:

public:
BankAccount(float start_balance = 0);

This means that if a BankAccount object is created with no parameter argument, then the
value of “start_balance” will default to zero, but if a value is provided then the default
will be overridden, as the following code fragment demonstrates:

73

5 Classes and objects

#include <iostream.h>
#include “bankacct.h”

void main()

{
BankAccount accounti; // will use default value
BankAccount account2(100.00); // will use value provided

cout << “Balance 1: £” << account1.getCurrentBalance() << endl;
cout << “Balance 2: £” << account2.getCurrentBalance() << endl;

}

The output from this program is:
Balance 1: £0
Balance 2: £100

Functions or methods with more than one parameter can also have default values,
provided that no parameters with default values are followed by others without defaults
e.g.

aFunction (int x, int y = 10} is ckay, but

aFunction (int x = 10, int y) is not

Using the copy constructor

To use the (default) copy constructor, all we need to express is that one newly instanti-
ated object equals another object of the same class. In the following example, BankAc-
count object “accountd’ is instantiated to be equal to ‘accountl’ (i.e. all the attribute
values will be taken from those of accountl).

BankAccount account4 = accountt;

In this line of code, the default constructor being called is the copy constructor — one
which copies all the attribute values of an existing object to another object of the same
class. Note that since the copy constructor is a different method from the constructor, it is
not affected by any parameters we may have added to our user-defined constructor.

A user-defined copy constructor

74

It is also possible to create your own copy constructor, defined by the fact that it takes a
reference to an object of the same class as a function argument, for example:

BankAccount(const BankAccount& copied_account);

might be a prototype for a copy constructor of the account class (other versions might
also take additional parameters). You will recall that the ‘&’ (ampersand) character is
used to denote ‘pass by reference’, and the ‘const’ prefix indicates that the parameter
object cannot be modified by the method. Clearly, the copy constructor needs to refer to
an existing object of the class in order to copy its attribute values, but why must it be
passed by reference rather than by value? This is simply because when we pass a para-
meter by value, then a copy of it is made when the function is called. What makes a copy
of an object? The copy constructor! Therefore passing an object to a copy constructor by
value would result in an unresolvable recursive call.

A copy constructor will usually access the attribute values of the parameter object using
the dot operator. You will notice that we do not have to access its attributes via selector
methods because both objects belong to the same class. Attributes referred to directly
are, of course, those belonging to the object being instantiated. Attributes referenced by

5 Classes and objects

the dot operator are those being copied from the parameter object. A ‘BankAccount’
copy constructor definition might look like this:

BankAccount::BankAccount(const BankAccount& copied_account)

{

account_number = copied_account.account_number;
strcpy(account_holder, copied_account.account_holder);
current_balance = copied_account.current_balance;

}
If we declare a copy constructor, then we must also declare an ordinary constructor, since
the compiler will no longer automatically use the default version. In effect, a user-
defined copy constructor overrides the default constructor. The reverse is not true
however — the default copy constructor is still available even if we define our own
constructor.

Itis important to note that if a copy constructor is used to instantiate an object, any user-
defined constructor will not be called (since the copy constructor replaces the
constructor), so any processing which takes place in the ordinary constructor will not be
executed. Therefore it may be necessary to duplicate code in both the constructor and the
copy constructor. An alternative is to instantiate the object first and then copy its attrib-
utes, and which method is more appropriate depends on the programming context.

Summary of key points from this chapter

1. A class is an ‘object factory” which can instantiate many objects of that class. Each
object encapsulates its own state data.

2. A class has a unique name and defines attributes and methods. An object has
identity, state and behaviour.

3. Object identity may be a unique name or simply the space an object occupies at a
particular time. It may have a unique data key but this is not the definition of
identity.

4. The ‘constructor’ method creates an object by reserving memory space for it. It may
also perform other programmer-defined tasks.

5. The default constructor is not declared but called by the compiler. More than one
user-defined constructor may be defined to replace it.

6. The copy constructor instantiates an object as an exact copy of another object of the
same class. A user defined copy constructor takes a reference to an object of the class
as a parameter.

7. An object may be instantiated by using the name of the class, the name of the object
and any required parameters. This calls the appropriate constructor.

8. Object methods may be called using the ‘dot operator’.

Exercises

1. Assume that an account object is to be created using the parameterised constructor
previously described. This will have to be put into your header file containing the
BankAccount class definition.

75

5 Classes and obijects

76

Instantiate a BankAccount object using a parameter argument, and set its other
attributes. Demonstrate the use of the copy constructor by creating another account
which has equal attribute values.

Using the ‘BankAccount’ class methods described in Chapter 4, write a program to
test these methods as follows:

a) Create three bank accounts, two with start balances of £0.00, and one with
£100.00.

b) Set the account numbers to 1, 2 and 3 respectively.

¢) Set the names of the account holders.

d) Credit account 1 with £50.00.

e) Credit account 2 with £75.00.

f) Debit account 3 with £75.00.

g) Display all the account numbers, holders and balances.

Create your own ‘XYCoordinate’ class (to define points on an xy graph), with attrib-
utes and methods as appropriate. Define your own constructor taking parameters to
set the initial position of a point (or default to 0,0). Instantiate several objects of the
class and demonstrate their methods and the use of the default copy constructor.

6 Object lifetimes and dynamic objects

Overview
This chapter investigates object lifetime (persistence) and visibility within a program,
and compares external, automatic, static and dynamic objects in terms of these proper-
ties. The destructor method is introduced, working in conjunction with the constructor
to create and destroy dynamic objects at run-time. The new and delete operators are
applied to the creation and destruction of dynamic objects, and the arrow operator is
used as the mechanism for sending messages to dynamic objects.

Object persistence and visibility

There are a number of factors which affect the persistence and visibility of an object
during the run time of a program. Some objects may exist throughout the running of a
program, and may be visible in all modules. Other objects may exist momentarily within
the limited scope of a particular method or statement body. Between these two extremes
we may have a range of lifetimes and visibility among instantiated objects.

Types of object

There are four types of object (or in fact any other data type) which we may instantiate in
a program. The first three are objects with specific names, but the fourth, dynamic
objects, cannot be identified in this way:

L. External (global) Objects ~ Persistent (in existence) throughout the lifetime of a
program and having ‘file scope’ — visibility throughout the
module source file. May be visible in more than one
module, perhaps visible in all modules (global).

2. Automatic (local) Objects Persistent and visible only throughout the (local) scope in
which they are created.

3. Static Objects Persistent throughout a program but only visible within
their local scope.

4. Dynamic Objects Lifetime may be controlled within a particular scope.

These types of object all serve different purposes, and require different forms of
language syntax for their creation, access and destruction. In our examples so far, we
have only created objects with specific names (in fact they have all been ‘automatic’
objects), but we have also discussed the possibility that some objects cannot have unique
names, and are identified only by the space which they occupy at a particular time.

In some programs there may be a fixed number of clearly identifiable objects whose exis-
tence is predictable in all runs of a program. When objects are predictable enough to be
identified at compile time, we are able to give them unique names. Such objects may be
either ‘external’, ‘static’ or ‘automatic’ depending on their required persistence and visi-
bility as defined by scope. In contrast, dynamic objects are those which cannot be identi-
fied at compile time, either in terms of their number or their identities, and their lifetimes
may be controlled independently of scope.

77

6 Obiject lifetimes and dynamic objects

External (global) objects

An external object is one which is persistent and visible throughout a program module —
i.e. its scope is an entire module (source file). It may also be made visible in other
modules. Objects which fall into the category of ‘external’ would be ones whose
numbers and identities remained constant throughout an application.

For example, if we are monitoring 6 petrol pumps in a garage forecourt simulation
program, then there are unlikely to be changes to this setup when the program is
running. Even if a pump is out of action it does not cease to exist, it simply changes its
state (to “empty’ or ‘broken’ for example). In this kind of scenario, the objects can have
unique names (e.g. pumpl, pump?2 etc). They also persist for the lifetime of the program.
If they are instantiated as software objects when the program starts up, then they will

exist in the program until it shuts down, since the physical pumps also persist in reality
(Fig. 6.1).

—
Q.
3
a.
[EnanaEwwan] [EREaYEa] [0 CCCeD
£ o [Eniafussn] [mansajunwa]

Pump 4
Pump 5
Pump 6

Fig. 6.1: Some objects persist throughout an application. These
petrol pumps have predictable lifetimes and identities.

Such objects may be regarded then as “external” objects — those which persist throughout
the program lifetime. External objects are always global for the module in which they are
declared, and are often global throughout the system — this means that they are “visible’
throughout all program modules. However, depending on implementation we might
have objects which are persistent throughout the lifetime of the program but not global
(not visible throughout all modules). This is purely an implementation detail relating to
‘linkage’ — the way in which the linker resolves the visibility of objects between modules.
An object with a name which is local to a module is said to have “internal linkage’,
whereas those whose names are visible in multiple modules have ‘external linkage’.

Automatic objects

As well as external, global objects, we may also have a number of locally declared “auto-
matic’ objects — objects which exist in a predictable manner for a particular period of

78

6 Obiject lifetimes and dynamic objects

time. The key difference between an external and an automatic object is that whereas an
automatic object is instantiated within the scope of part of a program module, an
external object is instantiated outside of any scope (in C++ scope is defined by braces).
"Automatic’ objects are automatically destroyed when they fall out of the scope in which
they were instantiated.

For example, we might have a system with some form of object-oriented menu driven
user interface, with one of the objects in the system a ‘help” menu. Since the help menu’
only needs to be visible to the user when s/he requires help, it does not need to exist for
the whole lifetime of the program, but only needs to be instantiated when required, and
can be automatically destroyed when no longer needed. Since there will only ever be one
help menu, and the circumstances in which it will be required are constant and
predictable, then we can give it a unique name, and confine its existence to a particular
‘scope’ in the program — the part where the help menu is visible (Fig. 6.2.)

Help Needed

{
K—\’ Menu Created

pw
g
IS
oS
PROGRAM 2 HELP
¥ MENU
(0]
Q.

A\
\/ }
Menu Destroyed

Fig. 6.2: The existence of an automatic object is predictably
defined by its scope (delimited in C++ by braces).

The existence of an automatic object is therefore delimited by the scope of the part of the
program in which it is instantiated. Depending on where it is instantiated, this may
mean that the object is in existence for the whole time the program is running, but not
necessarily visible throughout run-time. This is because even if an automatic object
persists throughout a program module, it cannot be made visible in other modules in the
system.

Static objects

From the examples above, we can see that external objects are persistent and visible
throughout the lifetime of a program, whereas automatic objects are only persistent and
visible within the scope in which they are declared. There is also the possibility in C++ to
explicitly declare a variable or object which has the scope (in terms of visibility) of an
automatic object but the lifetime of an external object. In other words, an object like ‘help
menu’ in Fig. 6.2 could be created once and once only (persisting from its creation to the
termination of the program), but with its visibility delimited by the scope within which

79

6 Obiject lifetimes and dynamic objects

it is declared. This is known as a “static’ object. Why might we wish to create a static
object? In general terms, when we wish an object’s state to persist even when it is not in
scope (and therefore not visible). A example might be the kind of menu which includes
different data depending on its state, such as some kind of configuration menu (Fig. 6.3).
In this type of menu, the possible options would be different depending on the current
configuration, so that the menu might display ‘mono screen’ as an option while the
current configuration is colour, but ‘colour screen’ if the current state is mono. In cases
like this, it is useful if the menu can ‘remember’ its state from the last time it was in
scope.

Change Configuration

f’—\:

——

Menu Created when this
scope first executes

Configuration Options

PROGRAM
Mono screen

132 column

Reverse Video

<

scope of configuration menu

\

Menu Persists while
precgram is running

Fig. 6.3: A static object can retain its state even when out of scope.

Question 6.1 What is the difference in lifetime and visibility between external, automatic
and static objects?

External objects exist for the lifefime of the program and their visibility is global. Automatic objects exist as long
as they remain in scope and are visible only within that scope. Static objects are created and visible within a
particular scope, but persist from their point of creation until the end of the program.

Dynamic objects

80

It may be that objects in a system are not predictable enough to be instantiated as
external, static or automatic objects. This is the case when we are unable to predict at
compile time:

1. Object Identities

2. Object Quantities

3. Object Lifetimes

For example, if we return to the garage forecourt simulation scenario, it would probably
be the case that the vehicles present on the forecourt at any one time need to be repre-
sented as objects in the system. These questions need to be addressed:

1. What is the identity of each vehicle?

6 Object lifetimes and dynamic objects

2. How many vehicles will be on the forecourt at any one time?
3. How long will a particular vehicle be on the forecourt?

Of course, none of these questions can be answered when the program is being written
or compiled, only when it is running!

In these circumstances, neither external, automatic nor static objects can be used to
represent vehicles, since such objects need to be predictable - they require unique names,
are of fixed number and fixed lifetimes. We need to represent unpredictable combina-
tions of vehicles using objects which can be dynamically instantiated and destroyed at
run time to represent the vehicles entering and leaving the system.

The way in which such collections of dynamic objects may be managed will be dealt
with in a later chapter, but the first step is to investigate how dynamic objects may be
created and destroyed.

Question 6.2 In what circumstances are objects with unique names unsuitable for use in a
particular program contexte

When we cannot predict the identities, numbers and lifetimes of the objects which will be represented at run time,
then they cannot be uniquely named (i.e. they cannot be external, static or automatic.] If objects are
unpredictable, then they must be represented dynamically.

Creating dynamic objects

When creating dynamic objects, we cannot give them the unique names which are
possible with other types of object. This means that we have to have some other way of
referencing objects at run time, and in practice this is done with pointers. We have
already discussed the use of pointers to memory locations, for example in referencing
the address of the first character of a string, and the use of pointers to reference dynamic
objects is similar. However, we still need a mechanism to create dynamic objects, and this
is through the use of dynamic memory allocation. In C++, a pointer can be directed to an
area of dynamically allocated memory at run time in order to reference a newly created
object. In this way, the constructor can be called via the pointer.

Destroying dynamic objects - the destructor method

We have already looked at the constructor method, and how it creates a software object
by reserving memory for the object’s attributes. We also know that, whether or not we
define it, a constructor is always called when an object is created — the default
constructor is used if the programmer does not supply one to override it (to perform
additional processes such as initialising attribute values). An object cannot be instanti-
ated without some form of constructor to reserve memory because the existence of any
object depends on it occupying memory space. Indeed, the identity of a dynamic object
depends entirely the memory location it occupies at a particular time.

If an object cannot be instantiated without a constructor method, it follows that an object
cannot be destroyed without a ‘destructor” method. This is a method which allows us to
destroy an object, and if we do not define one, a default destructor is called whenever an
object is destroyed. Its primary purpose is to free the memory used by the object. Like
the constructor, it can be extended by the programmer to perform additional functions if
required, though unlike the constructor it cannot take parameters. The destructor
executes when the object is destroyed either specifically by the programmer (in the case

81

6 Object lifetimes and dynamic objects

of dynamic objects), by falling out of scope (automatic objects), or by the program termi-
nating (external and static objects).

Cleanup and ‘garbage collection’

As we have noted, the default constructor reserves memory for a new object. The default
destructor correspondingly frees the memory used by the object when it has been
destroyed. This type of process is known as ‘cleanup’ — freeing up memory when the
data it contains is no longer of use. As we will see, although this is done for us when the
destructor is called by automatic objects falling out of scope, if we are handling dynamic
objects we have to do our own memory cleanup by explicitly calling the destructor. If a
dynamic object falls out of scope before we have called the destructor, then the
destructor is not called automatically and no cleanup will take place. This can have
serious consequences for memory management in our programs. Some languages have
a facility known as “garbage collection” which is able to trawl though memory disposing
of dynamic objects which are no longer being used (i.e. no longer referenced by a
pointer), and to recover memory more efficiently than the destructor. However, since
C++ has no garbage collection mechanisms the onus is on us to make sure that we do not
leave unwanted objects lying around in memory.

Calling the destructor

82

The destructor, then, is the direct corollary of the constructor, freeing the object’s
memory space which was reserved by the constructor. The destructor call for an auto-
matic object is implicit — it happens when (and only when) that object falls out of scope.
In contrast, the destructor call for a dynamic object must be explicitly stated — it is the
programmer’s responsibility.

The advantage of explicitly calling the destructor ourselves (rather then letting it be
called when an object falls out of scope) is that it gives us the same kind of control over
the end of an object’s life that we already have over its beginning. When we call an object
constructor in a program, we are explicitly defining where we want that object’s lifetime
to begin. When we put a destructor into a program we are explicitly defining where we
want that object’s lifetime to end. This does not replace the existing constraints on object
lifetimes defined by their scope — an object still cannot extend its life beyond its scope —
but it gives us an additional mechanism for control.

Question 6.3 What is the role of the destructor in terms of the ‘cleanup’ of unwanted
objects?

The destructor frees the memory occupied by objects when they are destroyed. For memory ‘cleanup” when
dynamically created objects are destroyed, the destructor must be called explicitly.

There is however an important difference between the destructor being called implicitly
by the compiler and explicitly by the programmer. That is, only objects created dynami-
cally can be destroyed dynamically. Objects created as external, static or automatic
objects cannot be destroyed explicitly by the programmer.

6 Object lifetimes and dynamic objects

C++ syntax

In the previous chapter we looked at the creation of objects with unique names, created
within the scope of a function (‘main’, although objects may be created within any func-
tion or method). Before investigating dynamic objects, we should contrast the instantia-
tion of external, static and automatic objects.

The lifefime of named objects

When we create a named object in a program, its lifetime and visibility is controlled only
by its scope. Named objects, as we have stated, may be of three types:

1. Automatic Objects

Objects instantiated inside the local scope of a function or other structure with its
body defined by braces. They only exist while they are in scope.

2. External Objects

Objects instantiated outside any function body. These have “file scope’ and exist for
the lifetime of the program.

3. Static Objects

Objects instantiated inside local scope and having local visibility, but persisting from
their declaration to the end of the program.

In all three cases, we only have control over the instantiation of objects, not over their
destruction which is controlled automatically by the compiler.

Automatic object declaration

The objects which we instantiated in the previous chapter were automatic objects —
declared inside the local scope of a pair of braces. Since braces delimit all block struc-
tures in C++ (functions, ‘if’ statements, loops etc.) then we can declare automatic objects
within any of these. The following object is automatic because it is declared inside the
body of ‘main’. It will be visible anywhere inside ‘main’, and will persist until ‘main’
finishes:

void main()

{

BankAccount accounti;

There is in fact a keyword (‘auto’) which may be used to precede automatic objects, but
it serves no useful purpose since this is the default type of any object declared within a
local scope.

External object declaration
An external object is declared outside the scope of any braces, for example:

BankAccount account1;
void main()

{
This declaration of objects is all we are able to do outside of scope — we cannot for

example call any methods of “account1” except inside the braces of a function body. Why
then might we wish to declare an external object, as opposed to one declared inside a

83

6 Object lifetimes and dynamic objects

scope? The main reason for doing this would be to make the object visible in other source
files which are in the same system, since only externally declared objects can be refer-
enced in other program modules. This is known as ‘external linkage’.

External linkage

As noted above, external objects and variables are those declared outside the body of any
function (i.e. not enclosed within braces). In a system containing several program
modules, such objects may be declared as ‘extern’ in other modules if their visibility
needs to extend beyond the file scope in which they are defined. For example, if the
external object “an_object’ (of the class ‘Object’) is declared in one module, it must also be
re-declared in other modules which reference the object, but the compiler has to be made
aware that it is in fact the same object being referenced in all modules. This can be
achieved with the ‘extern’ keyword (Fig. 6.4), and is known as ‘external linkage’ —
linking the declaration of an object in the scope of one file with the declaration of the
same object in separate files. The object must be declared in one module, and then
declared as an ‘external’ object in all other modules which reference it. In Fig. 6.4,
‘an_object’ is declared in the source file of “progl” (in this case where the ‘main’ function
is also defined), and declared as an external object in ‘prog2’ and ‘prog3’, allowing the
object to be referenced in those files also.

/pr0g1 .cpp W
Object an_object;
void main()
{
_
—
prog2.cpp W
PROGRAM extern Object an_object;
MODULES
N J
ﬁ
prog3.cpp

extern Object an_object;

_/

Fig. 6.4: An external object declared in one module may be made
visible in other modules via the ‘extern’ keyword.

Question 6.4 In what circumstances would we need to use the ‘extern” keyword?

The ‘extern’ keyword is needed if the same object or item of data must be visible in more than one source file.
Since if can only be declared once, it must be declared as ‘extern’ in all other modules.

84

6 Object lifetimes and dynamic objects

Static object declaration

A static object is declared, like an automatic object, within a local scope. However, it is
only initialised once, regardless of the number of times it falls in and out of scope. In the
following function, a static object is contrasted with an automatic object. Both will come
into scope when the function is executed, but the automatic object (“accountl’) will be
created and destroyed each time. The static object (‘account2’) will be instantiated only
once (the first time the function executes) and will persist until the end of the program:

void aFunction()
{
BankAccount account{;
static BankAccount account2;

}

The advantage of a static object is that because it persists, it can retain its state even when
itis not in scope. A static object cannot also be declared ‘extern’ —i.e. it can only be visible
within one module (source file).

Instantiating objects of different types

The following program contrasts the instantiation of external, automatic and static
objects (of a simple “TrafficLight’ class) and demonstrates their visibility and lifetimes:

/*
LIGHTS.CPP Program to demonstrate object scope
using a simple TrafficLight class
*/
#include <iostream.h>
/I these constants are used to relate integer values to the
// colours of a simpie two-colour traffic light
const int RED = 1;
const int GREEN = 2;
// the TrafficLight class definition
class TrafficLight
{
private:
// the integer attribute stores the colour as 1 or 2
int colour;
public:
TrafficLight();
void changeColour();
void showColour();
b
// the constructor initialises 'colour' to RED (1)
TrafficLight::TrafficLight()
{

}

// the ‘changeColour’ method changes the colour from RED to GREEN or vice versa
void TrafficLight::changeColour()

colour = RED;

{
if(colour == RED)
{
colour = GREEN;
}
else

85

6 Obiject lifetimes and dynamic objects

{
}

colour = RED;

// the 'showColour' method displays the current colour as a text string
void TrafficLight::showColour()

if(colour == RED)

{
cout << "RED" << endl;
}
else
{
cout << "GREEN" << end!;
}

// this is the declaration of an external object

TrafficLight external_light;

// 'main’ demonstrates the scope of the various types of object
void main()

// although the external object is declared outside of any function,
// it can only be sent messages from inside a function or method
external_light.changeColour();
for(inti=0; i < 2; i++)
{
// display the loop counter
cout << "times the loop has executed: " << i << endl;
// an automatic object is declared. It will be instantiated twice,
// each time the loop executes
TrafficLight automatic_light;
/1 changeColour will turn the light from red (its initial state) to green
automatic_light.changeColour();
// a static object is declared. it will be instantiated
J/ once, the first time through the loop
static TrafficLight static_light;
// changeColour will have a different effect each time through the loop,
// because the static object retains its state
static_light.changeColour();
// the output will show that the state of the static object has persisted, so
// that the second time through the loop it has changed back from green to red
cout << "The automatic lightis ";
automatic_light.showColour();
cout << "The static light is ";
static_light.showColour();

// the external light still retains its state until the end of the program
cout << "The external light is ";
external_light.showColour();

}
If we run the program, we can see that the external object may be referenced inside the
body of “main’. We can also see that whilst a new automatic object is created and
destroyed each time the loop executes, the static object is only created once, retaining its
state as it falls in and out of scope. The output is:

86

6 Object lifetimes and dynamic obijects

times the loop has executed: 0
The automatic light is GREEN
The static light is GREEN
times the loop has executed: 1
The automatic light is GREEN
The static light is RED

The external light is GREEN

Dynamic object syntax

In this chapter we have discussed objects being dynamically created and destroyed as a
program is running. We have previously looked at the syntax for the creation (instantia-
tion) of objects by the constructor method, which reserves memory space for the new
object and performs any user-defined initialisation processing (using parameters to the
constructor if required).

The additional syntax required for handling dynamic objects falls into three areas:

1. Creating and destroying dynamic objects The ‘new” and “delete’ operators, object
pointers

2. Calling the methods of dynamic objects ~ The “arrow’ operator (->)
3. Defining a destructor method The “tilde’ (~) character

Controlling the lifetime of dynamic objects

External and static objects persist as long as the program in which they are declared, and
are destroyed when it terminates. An automatic object is defined by its scope, and is
destroyed when it passes out of scope. We have no other control over the lifetimes of
these objects, which are destroyed by the compiler at the appropriate time. If we are to
exercise more control over the lifetime of objects, we need to be able to destroy objects at
will, as well as create them. In other words we need to be able to call the ‘destructor’
method as well as call the constructor.

The syntax which we have used to call the constructor in previous chapters is only
applicable to the instantiation of named objects, and a different form of the constructor
call has to be used to create unnamed, dynamic objects. We also need to be able to explic-
itly call the destructor, rather than simply allowing objects to fall out of scope. To handle
the dynamic memory allocation of data, including objects, C++ includes the operators
‘new” and ‘delete’. These operators are used to dynamically call object constructors and -
destructors respectively via the use of pointers. It is important to note that they are oper-
ators, not keywords, so they can be ‘overloaded’ (given new meanings by the
programmer — see Chapter 11).

Creating dynamic objects - the ‘new’ operator

C++ includes this special memory allocation operator (‘new’) for use in object construc-
tors, though it may be used to allocate storage for variables of other types as well. The
effect of ‘new’ is to allocate memory via a pointer of the required type. The syntax is
based on the creation of a pointer, and then direction of that pointer to an area of
memory which will contain an object.

The following example creates a pointer able to reference objects of class ‘BankAccount’:

87

6 Obiject lifetimes and dynamic objects

BankAccount* account_pointer;

This pointer is now able to point to an object of the BankAccount class. The pointer can
be directed to any ‘BankAccount’ instantiated using the ‘new’ operator (this assumes a
constructor with no parameters):

account_pointer = new BankAccount;
Or the creation of the pointer and the constructor call can be put into a single line:
BankAccount* account_pointer = new BankAccount;

“account_pointer’ is not the name of an object, but the name of a pointer to an object. It is
able to point to any dynamic object of that class, and may be redirected at run-time to
point to various dynamic instances of the BankAccount class. It is important to note that
dynamic objects instantiated using ‘new’ do not have names — they simply occupy a
memory space which may be referenced by a pointer. The following example shows the
redirection of a object pointers — the assignment operator allows the second pointer to be
directed to the same object as the first pointer:

#include "bankacct.h"

void main()

{

// create two pointers of the class
BankAccount* account_pointer1;
BankAccount* account_pointer2;

// use one to instantiate a new object of the class
account_pointer1 = new BankAccount;

// redirect the other pointer to point to the same object
account_pointer2 = account_pointeri;

// etc...

At this point in the program, both pointers now reference the object, and either could be
used to send messages to it (i.e. call its methods). Although pointers to dynamic objects
may be redirected, it is, however, essential that a dynamic object is being referenced by at
least one pointer at any one time, otherwise it will be lost and inaccessible.

Calling the methods of a dynamic object

88

In order to send a message to a dynamic object (i.e. to call a method), the pointer must be
de-referenced before the object’s public interface (methods) can be accessed. Therefore,
instead of the dot operator, the de-referencing “arrow’ operator must be used for objects
instantiated in this way:

pointer_name ->methodName();

To contrast the two types of method call, consider the following example, which assumes
the use of a non-parameterised constructor and the BankAccount class method ‘deposit’:

#include "bankacct.h”

void main()

{

// first we create an automatic object...
BankAccount account_1;

// then, in contrast, a dynamic account object..
BankAccount* account_2 = new BankAccount;

// account_1 is an object, account_2 is a pointer to an object.

// they would call the same method differently as follows:
account_1.deposit(100.00);

6 Object lifetimes and dynamic objects

account_2-> deposit(100.00);
}

The following example demonstrates the redirection of pointers by calling the methods
of referenced objects using the arrow operator:

#include "bankacct.h"

#include <iostream.h>

void main()

{

// create two pointers of the class
BankAccount* account_pointer1;
BankAccount* account_pointer2;

// use one to instantiate a new object of the class
account_pointer1 = new BankAccount;
account_pointer1 -> setAccountNumber(20);

/1 redirect the other pointer to point to the same object
account_pointer2 = account_pointert;

/I create a new object using the original pointer
account_pointer1 = new BankAccount;
account_pointer1 -> setAccountNumber(30);
cout << "Account number referenced by pointer 1 is: " <<
account_pointer1 -> getAccountNumber() << endl;
cout << "Account number referenced by pointer 2 is: " << account_pointer2 ->
getAccountNumber() << endl;

}

The output from this program is

Account number referenced by pointer 1 is: 30
Account number referenced by pointer 2 is: 20

There are many advantages to the instantiation of objects dynamically using pointers
rather than creating them as named objects, such as the ability to destroy them while
they are still in scope, and to handle disparate objects in ‘container classes’ whereby
groups of objects can be handled in organised collections such as stacks, queues and lists.
It also allows us to implement ‘run time polymorphism’ (see Chapter 14.) There are also
potential problem areas, such as keeping track of which pointers are currently refer-
encing an object, making sure that all objects have at least one pointer referencing them
and taking responsibility for ‘cleanup’ when objects are no longer required.

Question 6.5 When we instantiate dynamic objects using ‘new’, why is the dot operator
replaced by the arrow operator when calling object methods?

The dot operator is used to call the public methods of an object which has a unique name. In contrast, a dynamic
object does not have a unique name, but is referenced by a pointer. The arrow operator serves both to ‘de-
reference’ the pointer and to call the appropriate method.

Destroying dynamic objects - the ‘delete’ cperator

You may have noticed that in the previous two examples, although we created dynamic
objects by calling the constructor with ‘new’, there was no explicit call to the destructor.
If dynamic objects are allowed to fall out of scope in this way then there is no automatic
destructor call (and therefore no execution of any code defined in the destructor), and no
‘cleanup’ of memory. Whilst this does not matter in these specific examples (since the

89

6 Object lifetimes and dynamic objects

objects only fall out of scope when the program terminates) it would matter very much
in larger scale programs.

C++ includes the “delete’ operator to destroy objects which have been instantiated
dynamically using ‘new’ — ‘delete’ explicitly calls the destructor, which destroys the
object currently referenced by the pointer, as follows:

delete pointer_name;

Note that this destroys the object (by freeing its memory space), not the pointer. The
pointer is still available to point to other objects of the class. The following example
shows how a single pointer is used to create and then destroy two objects in turn:

#include "bankacct.h”

void main()

{

// create a pointer of the BankAccount class
BankAccount* account_pointer;

// use it to instantiate a new object of the class
account_pointer = new BankAccount;

/I destroy the object with ‘delete’
delete account_pointer;

// create a new object using the original pointer
account_pointer = new BankAccount;

/I destroy the object
delete account_pointer;

}

Directing pointers to ‘NULL’

90

It is worth noting that a pointer which is not directed to an object may point to any
random area of memory, so how can we tell if it is referencing an object or not? This
problem can be addressed by directing any pointers which are not currently referencing
objects to “NULL, which is equivalent to the base memory address (address 0). This is a
constant declared in (among others) the standard header files ‘stddef.h’ and ‘stdlib.hv’,
and is automatically included in ‘iostream.h’. Before referring to NULL in a program
therefore we must include one of these files. Pointers of any type can be directed to
NULL by using the assignment operator as follows:

#include <stddef.h>

void main()

{
int* x = NULL;
char* text_string = NULL;
RankAccount* account_pointer = NULL;
// etc...

Explicit direction of pointers to NULL is a useful device for checking what a pointer is
addressing, because we can use NULL in conditional statements, e.g:

if(account_pointer == NULL)

{
cout << "no object referenced";
}
else
{
cout << account_pointer -> getAccountHolder();
}

6 Object lifetimes and dynamic objects

It is good practice always to initialise pointers to NULL when they are declared. Not
only does it allow us to check if a pointer is referencing a valid object, but using ‘delete’
with a pointer which is directed to NULL is guaranteed to be harmless. In contrast,
calling “delete” with an unused pointer referencing some random area of memory is
asking for trouble!

Losing objects

As noted previously, if a pointer to an object created with the ‘new’ operator is allowed
to pass out of scope without the “delete” operator being used, then the destructor will not
be called. The object will still exist but be ‘lost’ ~ since it has no pointer to reference it, it
will be unreachable. In a large program, ‘garbage’ objects such as this may eventually
cause memory management problems. It is up to the programmer to ensure that every
object has at least one pointer referencing it any any given time. Of course, a single object
may be referenced by many pointers. One potential pitfall to be aware of is that using the
same pointer to instantiate many objects is perfectly acceptable, but every time ‘new’ is
used, the pointer is redirected to a new area of memory. It does not automatically destroy
any object which the pointer may already be referencing. Unless another pointer is
already pointing to that object, it will be lost.

Defining a destructor method

In the above examples, we have been calling the default destructor which, like the
default constructor, does not need to be defined by the programmer. Its sole function is
to free the memory previously allocated to the deleted object. However, we may extend
the destructor to perform other processes if we wish.

Like the constructor, the destructor has certain characteristics which mark it out from
other methods.

1. It takes the same name as the class, preceded by the ‘tilde’ character (~)
2. It cannot take arguments
3. It cannot return a value

For a class called ‘Queue’ for example, both the constructor and the destructor would
also be called ‘Queue’, but the name of the destructor would be preceded by the tilde,
which would also appear in any out of line definition of the destructor method (this
example omits all other methods and attributes):

class Queue

{
public:
Queue(); // constructor prototype
~Queue(); // destructor prototype
g

// out of line destructor definition
Queue::~Queue

{
}

It is a useful convention for the destructor (if defined) to follow the constructor (if
defined) in the class declaration, followed by the other methods.

// body of destructor method...

Q1

6 Object lifetimes and dynamic objects

As with the constructor, if the default destructor (which frees the memory allocated to an
object) is all that is required, there is no need to state it explicitly, but if some processing
is required to take place when an object is destroyed, then the destructor has to be speci-
fied. Unlike a constructor, a destructor cannot take parameters and cannot therefore be
‘overloaded’, i.e. there can only ever be one destructor per class. In contrast (as we will
see in Chapter 12) there may be more than one constructor for one class. As stated previ-
ously, the destructor method is invoked whenever an object is destroyed. This may be
done by the compiler (in the case of external, static and automatic objects) or explicitly
by the programmer (in the case of dynamic objects).

Desiructor calls for different object types

92

External and static objects are destroyed when a program terminates, automatic objects
are destroyed automatically by the compiler when they fall out of scope, and dynamic
objects must be explicitly destroyed by the programmer. In the following example,
various objects of a class called ‘Object” are created and destroyed. Messages are output
via the constructor and destructor to show the sequence of object creation and
destruction:

#include <iostream.h>

#include <string.h>

class Object

{

private:
char name[20];

public:
Object(char* name_in);
~Object();

b

Object::Object(char* name_in)

{
strncpy(name, name_in, 19);
name[19] = \0’;
cout << "constructor called for " << hame << endl;

}
Object::~Object()
{

}

// this is the instantiation of an external object

// which will persist for the lifetime of the program
Object external_object("External Object");
void main()

{

cout << "destructor called for * << name << endl;

cout << "Beginning of main" << endl;

// an automatic object is instantiated which will be destroyed
// when it falls out of scope

Object auto_object(" Automatic Object”);
// a static object is instantiated which will persist
// for the lifetime of the program

static Object static_object("Static Object");

}

// the automatic object will be destroyed here as it faiis out of scope
/1 a dynamic object is instantiated...

6 Object lifetimes and dynamic objects

Object* object_pointer = new Object("Dynamic Object");
// and explicitly destroyed...

delete object_pointer;

cout << "End of main" << endl;

}

// the static and external objects will be destroyed here

Using braces without an associated control structure is unlikely to find a useful applica-
tion, but it does serve to demonstrate that braces are the arbiter of the scope of any auto-
matic object.

Running this program gives the following output:

Constructor called for External Object
Beginning of main

Constructor called for Automatic Object
Constructor called for Static Object
Destructor called for Automatic Object
Constructor called for Dynamic Object
Destructor called for Dynamic Object
End of main

Destructor called for Static Object
Destructor called for External Object

Question 6.6 What kind of object requires the destructor to be explicitly called by the
‘delete’ operator?

Dynamic objects must have their destructors called by the ‘delste’ operator. In fact, ‘delete’ cannot be used with
any other type of object.

Dynamic object creation and destruction - an example

The following program uses the ‘new’ and ‘delete’ operators to dynamically call the
constructor and destructor for ‘Car’ objects, representing them being put in and out of a
garage. Points to note are the use of the pointer to dynamically create and destroy the car
objects, the direction of the pointer to NULL when not referencing an object which
allows us to test whether or not a car is in the garage at a particular time, and the
‘cleanup’ at the end - destroying any dynamic car object which exists when the program

terminates.
The header file defines a simple ‘Car’ class with a single attribute.
/*
CAR.H definition of the 'Car’ class
*/
#include <string.h>
class Car
{
private:
// the only attribute of a 'Car' is its colour
char colour[10];
public:
Car(char* colour_in);
char* getColour();

b
93

6 Object lifetimes and dynamic objects

94

// the constructor sets the colour using its parameter
Car::Car(char* colour_in)
{

strncpy(colour, colour_in, 9);

colour[9] = "\0';

/1 ‘getColour' returns the colour
char* Car::getColour()

{
}

return colour;

The ‘main’ function creates and destroys ‘Car” objects using a single pointer (‘garage’):

/*

CARMAIN.CPP
*/
#include "car.h"
#include <iostream.h>
void main()

// declare and initialise a 'garage’ (a pointer of the Car class)
Car* garage = NULL;
// temporary stores for keyboard input
int menu_choice = 0;
char temp_colour[10];
// loop to put cars in and out of the garage
while(menu_choice != 3)
{
cout << "Enter 1 to put car in garage, 2 to remove it, 3 to quit *;
cin >> menu_choice;
// if user chooses to put a car in, and the garage is empty
if(menu_choice == 1 && garage == NULL)
{
cout << "Enter colour of car ";
cin >> temp_colour;
// instantiate a new 'Car' object via the pointer
garage = new Car(temp_colour);
// display the colour of the car to get some run time feedback
cout << "Colour is " << garage -> getColour() << endl;
}
// if the user chooses to remove a car, and there is a car in the garage
if(menu_choice == 2 && garage != NULL)
{
/I destroy the current object
delete garage;
// reset the pointer to NULL
garage = NULL;
cout << "Car removed" << endl;

}

// cleanup! (not really necessary at the end of the program, but demonstrates the syntax)
if(garage != NULL)

delete garage;

6 Object lifetimes and dynamic objects

Here is an example test run of the program:

Enter 1 to put car in garage, 2 to remove it, 3 to quit 1
Enter colour of car red

Colour is red

Enter 1 to put car in garage, 2 to remove it, 3 to quit 2
Car removed

Enter 1 to put car in garage, 2 to remove it, 3 to quit 1
Enter colour of car blue

Colour is blue

Enter 1 to put car in garage, 2 to remove it, 3 to quit 3

The advantage of the ‘new’ and ‘delete” operators is that the number of objects created
during the run of a program need not be defined at compile time. However, to achieve
the dynamic creation and destruction of objects we need some way of effectively
managing the pointers that will reference the dynamic objects. One way of doing this is
to put object pointers into arrays, as in this modified example of the garage program
which declares an array of ten ‘Car’ pointers. Although the general structure of the
program is similar to the previous example, we now have a choice of ten garages to put

cars in and out of:
/
GARAGES.CPP demonstrates how an array of pointers may be used
to manage a collection of dynamic objects
*/
#include "car.h"
#include <iostream.h>
void main()
{
/I declare and initialise an array of 'garages' (pointers of the Car class)
Car* garages[10];
// set all the pointers to NULL. The variable 'i' declared here wil! be in
/1 scope for the rest of the program, and is used in all the for' loops
for(inti=0;i<10; i++)
{
garagesli] = NULL;

// temporary stores for keyboard input
int menu_choice = 0;
char temp_colour[10];
int garage_number;
// loop to put cars in and out of garages
while(menu_choice = 3)
{
cout << "Enter 1 to put car in garage, 2 to remove it, 3 to quit ";
cin >> menu_choice;
/1 if user chooses to put a car in
if(menu_choice == 1)
{
cout << "The following garage numbers are empty *;
for(inti=0; i < 10; i++)
{
if(garagesli] == NULL)

/l display 'i + 1' so that the first garage number is 1, not 0

95

6 Obiject lifetimes and dynamic objects

96

cout<<(i+1)<<", ™
}
}

cout << endl << "Enter garage number for car to occupy ";
cin >> garage_number;

// if the user has entered the number of an empty garage
if(garagesjgarage _number - 1] == NULL)
{

cout << "Enter colour of car ";
cin >> temp_colour;
// instantiate a new 'Car' object via the pointer
garages[garage_number - 1] = new Car(temp_colour);
cout << "Colour is " << garages[garage_number - 1] -> getColour() << endl;

}
else
{
cout << "That garage is not empty" << endl;
}

}

/1 if the user chooses to remove a car
if(menu_choice == 2)
{
cout << "The following garage numbers are occupied ";
for(i = 0; i < 10; i++)

if(garagesli] = NULL)
{

// display 'i + 1' so that the first garage numberis 1, not 0
cout << (i+1)<<", "}
}
}
cout << endl << "Enter garage number to empty ";
cin >> garage_numbetr;
// if the user has entered the number of an empty garage
if(garages[garage_number - 1] I= NULL)
{

cout << garages[garage_number - 1] -> getColour() << " car removed" << endl;
/I destroy the object

delete garages[garage_number - 1];
/I reset the pointer to NULL

garages[garage_number - 1] = NULL;

}
else
{
cout << "That garage is unoccupied" << endli;
}

}

// cleanup! (not really necessary at the end of the program,
// but demonstrates the syntax)
for(i=0;i<10; i++)
if(garagesli] != NULL))
{

delete garagesiil;

6 Obiject lifetimes and dynamic objects

This is an example test run that puts two cars in garages and removes one:

Enter 1 to put car in garage, 2 to remove it, 3 to quit 1

The following garage numbers are empty 1,2, 3,4, 5,6,7, 8, 9, 10
Enter garage number for car to occupy 4

Enter colour of car orange

Colour is orange

Enter 1 to put car in garage, 2 to remove it, 3 to quit 1

The following garage numbers areempty 1,2, 3, 5,6, 7, 8, 9, 10
Enter garage number for car to occupy 9

Enter colour of car purple

Colour is purple

Enter 1 to put car in garage, 2 to remove it, 3 to quit 2

The following garage numbers are occupied 4, 9,

Enter garage number to empty 4

orange car removed

Enter 1 to put car in garage, 2 to remove it, 3 to quit 3

This is acceptable if there is a fixed maximum number of objects which may need to exist
in the system. A better (though more complex) way is to use some kind of manually
created linked list or tree of objects. The best way (and the usual object-oriented
approach) is to use a ‘container” object into which all other objects are put, and which
provides the facilities for controlling creation, access and destruction of dynamically
created objects. Containers come in many forms and are able to contain objects of single
classes or mixed classes depending on requirements. The internal workings of a
container do not have to be known to the application programmer, who only needs to
know the methods which are available for an object of the container class. Whilst the
internal implementation (encapsulated into the container class definition) may indeed
be a list or a tree of some kind, we do not have to know about the internal implementa-
tion in order to use container objects of the class. This frees us from the responsibility of
managing complex sets of pointers. Container class libraries are a common element in
object-oriented languages since they have such general applications, and C++ is no
exception, with the Standard Template Library (STL) providing a number of container
types. Some examples of containers will be investigated in Chapter 15.

Summary of key points from this chapter

1. Objects may be external, static, automatic or dynamic. External objects have global
visibility in at least one program module, and persist for the lifetime of the program.
The lifetime and visibility of automatic objects is delimited by scope. Static objects
also have their visibility delimited by scope, but persist from their instantiation to
the end of the program.

2. Dynamic objects are needed when object identities, quantities and lifetimes cannot
be predicted at compile time.

3. The destructor method is the corollary to the constructor — it frees the memory space
of a destroyed object.

97

6 Obiject lifetimes and dynamic objects

4.

10.

‘Cleanup’ of memory space is not done automatically with dynamic objects — it is the
programmer’s responsibility to destroy redundant objects explicitly. C++ has no
‘garbage collection’ mechanisms to relieve us of this task.

A destructor (like the constructor) has the same name as its class, but is identified by
the tilde (~) character. Destructors cannot take parameters or return values.

We can use ‘new’ and ‘delete’ to dynamically instantiate and destroy objects at run
time.

Dynamic objects are instantiated using pointers of the class type.

Messages are sent to dynamic objects using the ‘arrow’ operator (->) which de-refer-
ences the pointer.

Pointers may be redirected to different objects of the class or to NULL.

Sets of dynamic objects may be managed using data structures such as arrays, lists,
trees etc. or by using ‘container classes” provided by software vendors.

Exercises

98

1.

The following code shows a ‘BankAccount’ object being created as an automatic
object, and its methods being called. Rewrite the code so that the object is created
with the ‘new’ operator, and destroyed by the “delete’ operator before it passes out of
scope. Use the appropriate operator to call the methods:

#include <iostream.h>

#include "bankacct.h"

void main()

{

BankAccount an_account;
an_account.setAccountNumber(100);
cout << an_account.getAccountNumber();

}
Pointers can be redirected to any object of their class. This means that we can use
them to sort objects. Write a ‘swap’ function (similar to that described in Chapter 3)
which is able to swap two pointers of the ‘BankAccount’ class. The simplest way to
pass the pointers is by reference, though you could pass them by value and derefer-
ence them inside the function using the asterisk dereferencing operator.

One simple way of handling dynamic objects is to put them into an array. Declare an
array which is able to act as a container for up to 20 ‘BankAccount” object pointers,
and initialise them all to NULL. Remember that NULL is a standard constant which
is declared in a number of header files including ‘iostream.h’. Any pointer can be
directed to NULL: e.g.

a_pointer = NULL;

Using your array of ‘BankAccount’ pointers, create a program which allows the
dynamic creation and destruction of bank accounts. Accounts should be opened and
closed at will while the program is running, with unused or closed accounts defined
by a NULL pointer.

7 The metaclass

Overview

This chapter discusses the concept of the metaclass, and how it differs from the class. The
different roles of class attributes and methods as opposed to object attributes and
methods are outlined, also the relationship between constructors/destructors and the
metaclass. The term ‘metadata’ is introduced in the context of class definitions. A further
use of the “static’ keyword is introduced as the mechanism for giving metaclass behav-
iour to the C++ class construct.

The role of the metaclass

It may seem inappropriate to discuss the metaclass in this book, since there is no direct
implementation of it in C++. However, the metaclass concept encompasses some
important aspects of the role of classes, and therefore provides a useful framework for
discussion.

The use of ‘meta’ as a prefix has a wide range of meanings, including, simply, ‘about’.
The term ‘metaclass’ is similar in usage to ‘metalanguage’ - a language used to describe
some other language (i.e. the metalanguage tells us about the language). There are also a
number of terms where ‘meta’ is used to imply some form of abstraction (such as ‘meta-
physics’). From these interpretations we may conclude that the metaclass tells us about
the class, and may be seen as an abstraction of the class in the same way that the class (as
an “abstract data type’) is an abstraction of a set of objects.

The metaclass is often described as the “class of a class’, which may seem a rather odd
expression, but it can be explained as follows.

The class, as we know, holds the attributes and methods which will apply to objects of
the class — it is the class of the objects.

The metaclass holds the attributes and methods which will apply to the class itself ~
therefore it is the class of the class! (Fig. 7.1)

OBJECT
Metaclass Class
class object
attributes attributes OBJECT
and and
methods methods
OBJECT

Fig. 7.1: The “class’ is the class (attributes and methods)
of the objects. The ‘metaclass’ is the class of the class.

99

7 The metaclass

Every class has one (and only one) metaclass, and the metaclass contains those parts of a
class which are not appropriate to be duplicated for every specific object.

The metaclass may seem a rather esoteric concept, but it is basically a repository for
those parts of a class which must exist at the run time of a program, whether or not there
are objects of the class in existence.

What kinds of things are appropriate to the class, but not to the objects of that class? Let
us begin by reviewing the relationship between classes and objects.

Limitations of object attributes and methods

A class (as we have so far investigated it) acts as a kind of blueprint or skeleton for
objects of the class. The class does not exist as a specific entity, but is the abstract repre-
sentation of a user-defined data type. It defines the attributes which all objects in the
class will contain to represent their state, and the methods which may be used to send
messages to them.

When an object is created, its attributes will have state values, independent of the state
values of other objects. For example, if we instantiate 3 ‘fuel tank’ objects, all 3 will have
an attribute of ‘fuel level’, but each object may have a different state value for that
attribute (Fig. 7.2).

T T
w
— T T
\.————’—/
— T T
ﬁ/
Fueltank 1 ~— ™ —
Fueltank 2 ~—™
Fueltank 3

Fig. 7.2: The state values of ‘fuel level” for each ‘fuel tank’
object are independent of the state of other objects.

However, sometimes we may want to have a physical representation of something about
a whole class of objects rather than about one object in particular. Suppose we want to
know how many objects of a particular class exist at any one time — where do we record
this information?

With what we know about classes and objects, we can see that there would be serious
drawbacks to having an attribute in each object which stored this total. It would be
possible to implement such an attribute, but to avoid each object containing a different
total, that attribute would have to be changed for every object each time a new object
was created or destroyed, and would be an unnecessary duplication of the same data.

100

7 The metaclass

Question 7.1 Where do the attributes defined by a class actually reside when a program
is running?

Attribute values exist in objects of the class, whereas the class defines what the state affributes will be for any
object. The state values only exist in the objects, and are not accessible directly by the class.

Class attributes

Consider a large system which keeps track of vehicles passing through a controlled
traffic system, representing each vehicle as a dynamic object created when that vehicle
enters the system and destroyed when it leaves. If we wanted to know at any one time
how many vehicles were in the system, then each ‘vehicle” object would have to have a
constantly updated count of how many vehicles (objects) currently existed, every single
time another vehicle entered or left the controlled traffic area. This is clearly an inappro-
priate approach - details about the whole class should not be the responsibility of
specific objects.

What we need therefore is not an attribute duplicated for every object, but a single
attribute for the whole class. It is true of course that we could have a simple counting
variable outside the class itself, but this would undermine the principles of encapsula-
tion by making the attribute simply a global variable, open to manipulation from outside
the class. In order to encompass such attributes inside the class, we are able to make a
distinction between ‘object attributes’ (those which are duplicated for each object) and
‘class attributes’ (those which exist only once for each class). The terms ‘instance vari-
able” and ‘class variable’ are sometimes used to mean the same thing as ‘object attribute’
and “class attribute’ respectively.

Given that we want to have class attributes as well as object attributes, but need to keep
them encapsulated in the abstract data type, where do we put them? We cannot put them
in the class, since, as we know, all attributes defined in the class are properties of indi-
vidual objects. The answer, as you may have worked out by now, is to put them in the
metaclass.

The metaclass, then, is a repository for class attributes which only have one instance,
regardless of how many objects of the class exist. In the traffic system referred to above,
the metaclass might for example hold an attribute called “vehicle_count’ (Fig. 7.3), which
would be incremented each time a vehicle entered the system (and an object was instan-
tiated) and decremented when a vehicle left (and the object was destroyed). Class attrib-
utes are in essence any data which tells us about the class as a whole rather than a
specific object.

It is important to note that, despite conceptual differences, the class and metaclass are
inextricably linked, and that class attributes are just as ‘visible’ to objects of the class as
object attributes are. Indeed, in C++ the metaclass and the class are part of the same
structure. However, object attributes belong to individual objects and are not accessible
by the class.

101

7 The metaclass

Metaclass Class
Vehicle Vehicle
Count Obijects
0(0]0]0}|8

Fig. 7.3: The metaclass contains class attributes which have one
instance per class, such as a count of instantiated objects.

Question 7.2 What is the difference between a class attribute (or ‘class variable’) and an
object attribute {or ‘instance variable’). Suggest one example of each from
a class of ‘customer account’ objects.

A class attribute exists once for the whole class. An object attribute is duplicated for each object. i.e. for n objects
there will be one class attribute but n object attributes. For ‘customer account’ objects, an example of an object
attribute would be ‘account balance’, whereas ‘number of accounts’ would be a class attribute.

Class methods

Having established that the metaclass contains class attributes, let us examine the role of
‘class methods’. Like class attributes, they also exist in the metaclass, and are as visible to
objects as they are to the class.

Consider our example of a class attribute which keeps a count of how many objects exist
in a ‘live” system at any one time. If we wish to return the current state of this count, we
will need some method to do so. It is perfectly acceptable to access class attributes with
object methods - as we have stated there is no difference in visibility from an object’s
point of view between an object attribute and a class attribute. However, what happens
if there are no objects instantiated when we want to return the count? If there are no
objects currently in existence, then we have no mechanism by which to call the method
which returns the count, so we cannot access the class attribute! This is where we need a
class method, which is usable by the class directly, whether or not any objects of the class
exist. Class methods, like class attributes, reside not in the class but in the metaclass
(Fig. 7.4). Class methods may only access class attributes since object attributes can only
be accessed by objects.

102

7 The metaclass

Metaclass Class
Vehicle i Vehicle !
Count i Objects !
ololo]o|o !

Fig. 7.4: When no objects of the class exist, class methods
(residing in the metaclass) allow access to class attributes.

Another useful role of class methods is simply to group together similar functions that
do not operate on specific objects. For example, a 'Date’ class would have attributes such
as 'day’, 'month' and 'year', and a number of methods to manage individual date objects.
However, there are also a number of processes related to dates that do not apply to
particular date objects. These include functions like converting an integer in the range 1
to 7 to a string containing the day name, or converting a number to the name of the
month. It is appropriate to attach such general date functions to a date class by making
them class methods.

Question 7.3 The only example used so far of a class attribute is a ‘population’ counter —
i.e. one which counts how many objects of a class there are at any one
time. Can you suggest another type of attribute which might suitably reside
in the metaclass?

Another common class attribute is one which has common data throughout the class, what we might term a ‘class
constant’, such as a method which returns the name of the class to which objects belong. In a system which has
objects of many classes, this is sometimes usefull Since the class name will be consistent for all objects in the
class, putting this atfribute in the metaclass avoids unnecessary duplication. (This is not the only answer to the
question of coursel

Other components of the metaclass

Apart from class attributes and methods relating to them, what else can go in the meta-
class? In practice, C++ makes no further distinction between parts of the class and the
metaclass, and as we will see, subsumes both class and object attributes and methods
into the “class’ body. However, there is a semantic distinction between ordinary methods
and those which create and destroy objects — the constructor and the destructor. Both of
these methods are said to reside in the metaclass. The reason for this is simply that since
objects do not create objects (or where would the first object come from?), then the
method which creates them cannot be an object method. Therefore the constructor
belongs to the metaclass rather than the class. A similar argument follows for destruc-
tors; an object cannot destroy itself, it is destroyed by the permanent instantiation of the
class — the metaclass (Fig. 7.5).

103

7 The metaclass

Metaclass

CREATE &

DESTROY

X%
N“%

Fig. 7.5: Methods which create and destroy objects (constructors
and destructors) are said to reside in the metaclass.

Question 7.4 What resides in the metaclass?

Class atiributes, class methods, constructors and destructors.

Much of the above is a semantic distinction which has few practical implications in C++,
and the concept of the metaclass is only a significant element in Smalltalk programming.
Other object-oriented languages such as Eiffel [Meyer, 1988] have little time for it.

For our purposes, the main thing is to be clear about why some attributes and methods
belong to the metaclass (and exist once for the whole class) and others belong to the class
(and exist for every object in the class). C++ doesn’t have a separate metaclass construct
in its syntax, but it does make this important distinction.

Metadata

A similar and semantically related term is ‘metadata’. The term applies to any data
which describes other data, such as a class definition or perhaps a database table record
structure. The term may be applied to real-world data too: ‘There are real-world things
that describe other real-world things. A part description in a catalog describes manufac-
tured parts. A blueprint describes a house. An engineering drawing describes a system’
[Rumbaugh et al, 1991 p.70]. A class, as we know, has a metaclass which describes the
data associated with it, and the class in turn describes the data associated with objects.
The metaclass, then, is the metadata for the class, which in turn is the metadata for the
objects. The term “meta-object’ is therefore sometimes used to refer to the class definition
(Fig. 7.6).

104

7 The metaclass

MetaObject
MetaClass (Class)
Class Object
Metadata Metadata

Figure 7.6: The metaclass provides ‘metadata” about the class itself. The class in turn
provides metadata about objects. It may therefore be seen as a ‘metaobject’.

‘Metadata’ may also be taken to mean generic classes and methods (‘templates’ in C++)
which are able to act on a range of types. This approach, known as ‘genericity’, will be
discussed in Chapter 12.

Question 7.5 In what way can a class definition be seen as an example of ‘metadata’?

Metadata is data which describes other data. Since the class describes the data present in objects, it is metadata
for objects, or a ‘meta-object’.

C++ synfax

The only new syntax needed to implement the metaclass concept in C++ is the ‘static’
keyword, which we introduced in the previous chapter. Indeed, the usage is similar,
since in both contexts it is used to allow data to persist even when the variable or
attribute which contains it is not in scope. Since there is no separate metaclass in the
syntax, attributes and methods which belong to the metaclass are defined only by this
keyword. We will see that class methods can be called not only by objects of the class but
by the class itself using the scope resolution operator (::).

Any attribute or method which is appropriate to the metaclass must be preceded by the
keyword ‘static’, so that for example an integer class attribute called “total_objects’
would be defined as follows:

static int total_objects;

An ordinary class method could be used to return the value of this attribute, but a class
method to return it would also be preceded by the ‘static’ keyword (inline in this
example):

static int returnTotalObjects()

{

}

This class method may be called at run time by using the name of the class with the
scope resolution operator, as follows:

return total_objects;

ClassName::returnTotalObjects();

However, note that the word ‘static’ is not used with constructors or destructors, even
though they conceptually belong to the metaclass. Since they can only be class methods,
there is no appropriate distinction to be made, and ‘static’ is not a usable prefix.

In the following example, the vehicle monitoring system is used, with the class partially
implemented (there are many other possible attributes and methods we might wish to

105

7 The metaclass

include in a realistic system). The main point of this example is to demonstrate the use of
a class attribute (‘vehicle_count’) and its associated method (‘getVehicleCount’) to keep
track of how many vehicle objects are instantiated at any one time. The constructor
increments this count when a vehicle is created, and the destructor decrements it when a
vehicle is destroyed.

Note that the ‘static’ keyword only appears inside the class. When a static method is
defined outside the class, ‘static’ only precedes the prototype, and is not used with the
out of line definition.

#include <string.h> // for ‘strncpy’
class Vehicle
{
private:
/' we may have a number of object attributes, for example:
char registration_number[10];
// this is a class (static) attribute
static int vehicle_count;
public:
/I the constructor — semantically this is in the metaclass,
// butitis never preceded by the static keyword since
// it cannot be an object method
Vehicle();
// The destructor
~Vehicle();
/I object methods...
void setRegistrationNumber(char* reg_no_in);
char* getRegistrationNumber();
// and a class (static) method
static int getVehicleCount();

b
Vehicle::Vehicle()
{
vehicle_count++;
}
Vehicle::~Vehicle()
{

vehicle_count— —;

void Vehicle::setRegistrationNumber(char* reg_no_in)

{
strncpy(registration_number, reg_no_in, 9);
registration_number[9] = \0’;

char* Vehicle::getRegistrationNumber()

{

return registration_number;

}

/' note that the class method definition is not preceded with ‘static’
int Vehicle::getVehicleCount()
{

return vehicle_count;

}

106

7 The metaclass

Reserving memory for class (static) attributes

There is something else we have to be aware of with metaclass (static) attributes, and it
must be resolved before we can use a class which contains them in a program.

The role of the constructor is primarily to reserve memory for the new object it instanti-
ates, though it may do other processing as well. The class itself does not occupy memory
(apart from being part of the executable code) because it contains no data — it only
provides the blueprint for the objects which themselves will contain state data. The meta-
class therefore, since it is part of the class blueprint, does not automatically reserve any
memory for itself, which raises the question, where in memory are class attributes stored?

In fact, the onus is on us to reserve storage for all class attributes in our programs. This
must be done after the class has been declared but before the class is used in a program,
using the scope resolution operator in a similar style to the linking of object methods to
the class. For example, to reserve storage for the class attribute ‘vehicle_count’ used in
the above example, and to initialise it to zero, we would do the following:

int Vehicle::vehicle_count = 0;

This must be done outside the class body, after the definition of the class itself, so that the
compiler is aware of both the class and the attribute. When our programs become larger
and we begin to separate class definitions (in header files) from their method definitions
(in .CPP files), class attributes should be defined in the method definition file. Note that
the keyword ‘static’ is not used when memory is reserved for a class attribute. If a
numeric class attribute is to be initialised to zero, then this need not be stated, since it is
the default. We could therefore reserve storage for ‘vehicle_count’ as follows, and it
would initialise to zero:

int Vehicle::vehicle_count;

Example programs

When we create objects of the ‘Vehicle” class, the constructor increments the vehicle
count attribute by one. In the following example, the class method is used before any
objects are instantiated to display the current number of objects on the screen (using
‘cout’). Then an object of the class is instantiated, and the incremented count is displayed
twice, once by the object and once by the class. Note that both the object and the class
may be used to call a class method but of course it can only be called by an object if an
object of the class has been instantiated:

#include <iostream.h>

#include "vehicle.h"

void main()

{

cout << "Count = " << Vehicle::getVehicleCount() << endl;
Vehicle vehiclel;

cout << "Count =" << vehicle1.getVehicleCount() << endl;
cout << "Count = " << Vehicle::getVehicleCount() << endl;

}

The rather unexciting output from this program should be:

Count =0
Count =1
Count=1

107

7 The metaclass

108

A better demonstration of our vehicle counter would be to create and destroy a number
of dynamic objects while the program is running. In this example, dynamically instanti-
ated vehicles are referenced by an array of pointers, which acts like a stack (i.e. the last
vehicle created is the next to be destroyed). Although this is not very realistic, it does
demonstrate the class attribute being continually updated. In practice, a more flexible
data structure such as a linked list might be more appropriate, but the class attribute and
method would be utilised in much the same way.

#include <iostream.h>
#include "vehicle.h"
void main()

{
// create an array of 10 vehicle pointers and variables
// for user input and array indexing
Vehicle* vehicles[10];
int user_input;
int array_index = 0;
// loop until user chooses ‘quit’
while(user_input != 3)
{
cout << "Enter 1 for arrival, 2 for departure, 3 to quit ";
cin >> user_input;
// instantiate a new vehicle, providing the array is not full
if(user_input == 1 && array_index < 10)
{
vehicles[array_index] = new Vehicle;
array_index++;
}
// destroy the last vehicle in the array, unless it is empty
if(user_input == 2 && array_index > 0)
{
array_index— —;
delete vehicles[array_index];

// display the current vehicle count
cout << "Count = " << Vehicle::getVehicleCount() << endl;
}
}

An example test run follows:

Enter 1 for arrival, 2 for departure, 3 to quit 1
Count=1
Enter 1 for arrival, 2 for departure, 3 to quit 1
Count=2
Enter 1 for arrival, 2 for departure, 3 to quit 2
Count =1
Enter 1 for arrival, 2 for departure, 3 to quit 1
Count =2
Enter 1 for arrival, 2 for departure, 3 to quit 2
Count=1
Enter 1 for arrival, 2 for departure, 3 to quit 2
Count=0
Enter 1 for arrival, 2 for departure, 3 to quit 1
Count =1

7 The metaclass

Enter 1 for arrival, 2 for departure, 3 to quit 2
Count=0
Enter 1 for arrival, 2 for departure, 3 to quit 3

Class attributes and methods give us a simple and safe way of maintaining information
about a class, independent of the existence of any objects of that class. The various
aspects of the metaclass demonstrated above (constructors, destructors, class attributes
and methods) give us control over, and information about, classes of dynamic objects.

Summary of key concepts from this chapter

1. The metaclass holds class attributes and methods.

2. Metadata is data about other data.

3. Class (static) attributes exist once for the class, regardless of how many objects are
instantiated. Object attributes are duplicated for every instance.

4. Class attributes are visible to both class methods and object methods.

5. Class (static) attributes do not automatically have memory space allocated — this has
to be done explicitly outside the class.

6. Class methods may be called by both the class (using the scope resolution operator)
and objects (using the dot operator).

7. Class methods may be called by the class even when no objects of the class exist.

Exercises

1. Create a class called ‘Object’, which includes a class method for returning the current
number of objects in existence. The attribute which records this should be incre-
mented each time a new object is instantiated. Include a class method which returns
the name “Object’ when called. Remember to reserve memory for the class attributes
outside the class body, where they may also be initialised.

2. Write a short program to test the ‘Object’ class. Create several instances of the class
and check that the count and the name are being correctly returned.

3. Create a class called ‘Banana’ which includes a class attribute and method to count
banana objects. Suggest some other counters and/or class constants that might
usefully be Banana class attributes. Contrast these with suggestions for attributes
which would be more appropriately defined for each banana.

4. Add a class attribute and associated class method to the ‘BankAccount’ class to keep

a count of bank account objects.

109

8 Inheritance and classification
hierarchies

Overview

This chapter explores inheritance, and how it allows object types to be organised into
classification hierarchies. Examples of generalisation and specialisation of object classes
are introduced, and the criteria for defining a class as “a kind of’ some other class. The
way in which inheritance allows us to extend the functionality of existing classes is
outlined, as is the role of abstract classes in a hierarchy. In C++, the ‘protected” keyword
is introduced as the mechanism for allowing classes to access inherited attributes, while
public derivation is used to allow objects to access inherited methods.

What is inheritance?

Inheritance is one of the most powerful features of object-oriented programming. By
organising classes into a ‘classification hierarchy’, it gives an extra dimension to the
encapsulation of abstract data types because it enables classes (and therefore objects) to
inherit attributes and methods from other classes. The inheriting class can then add extra
attributes and/ or methods of its own.

The terminology used for inheritance encompasses a number of terms (see table) which
are largely interchangeable:

Derived Class A class which inherits some of its attributes and methods

or from another class

Subclass

or

Child Class

Base Class A class from which another class inherits

or

Superclass

or

Parent Class

Ancestor A class’s ancestors are those from which its own
superclasses inherit

Descendant A class’s descendants are those which inherit from its
subclasses

What then is the purpose of inheritance? Why should we wish to ‘inherit’ the attributes
and methods of one class into another? There are two complementary roles of inheri-
tance in an object-oriented application:

1. Specialisation: Extending the functionality of an existing class
2. Generalisation: ~ Sharing commonality between two or more classes

These two are not by any means mutually exclusive, and we might say that they are ‘top
down’ and ‘bottom up’ approaches respectively to exactly the same type of structure. In

110

'8 Inheritance and classification hierarchies

the ‘top down” approach we are starting with a base class and deriving from it (special-
ising it). With the ‘bottom up’ approach, we start with separate classes and generalise a
common base class from them. In practice the two tend to be part of the same iterative
process of analysis and design, though the ‘top down’ specialisation approach is the one
more associated with the re-use of existing classes.

The product of inheritance of this kind is known as a ‘classification hierarchy’ — a rela-
tionship between classes whereby one class can be said to be ‘a kind of” (AKO) other
class. As we traverse the hierarchy from top to bottom, we move from ‘generalisation’ to
‘specialisation’ of classes — adding functionality by extending what exists at each level of
the hierarchy to create more specialised versions of the class. Fig. 8.1 shows a simple
classification hierarchy of buildings. At the root of the hierarchy tree is a generalised
‘base’ class called ‘Building’, from which ‘Commercial’, ‘Public’ and ‘Domestic’ build-
ings inherit.

(e

Cathedral

Office Block

House

Fig. 8.1: A classification hierarchy of buildings. From top to bottom
of the hierarchy we move from generalisation to specialisation.

‘Commercial’, “Public’ and ‘Domestic’ buildings are therefore all ‘a kind of’ building.
‘Kinds of” commercial building might be factories, office blocks, hotels etc, ‘kinds of’
public buildings hospitals, cathedrals, libraries, stations and so on, whilst apartment
blocks and houses are ‘kinds of” domestic buildings. The use of arrows in this and other
diagrams indicates an ‘inherits from’ relationship (i.e. derived classes point to their base
classes), a notation from the Unified Modelling Language (UML).

11

8 Inheritance and classification hierarchies

‘a kind of’ or ‘a part of'?

Each level of a classification hierarchy contains more specific types of class, each one of
which must be ‘a kind of’ the class from which it inherits. It is important to make this
distinction between a class which is “a kind of” other class and one which is “a part of’
another class. For example, we would not make ‘apartment’ a derived class of “apart-
ment block’, since it does not make sense to say ‘an apartment is a kind of apartment
block’. An apartment is not “a kind of” apartment block but “a part of” it (Fig. 8.2). Such
‘part of” types will be discussed in the next chapter.

Apartment
Block

X!

Apartment

Fig. 8.2: Inappropriate classification — an apartment is not
‘a kind of’ apartment block, but ‘a part of’ one.

Different classes or different states?

When designing a class hierarchy, we have to make distinctions between objects which
need to be represented by different classes, and those which belong to the same class but
may have different states. This means analysing whether differences between objects are
dependent on type (such as a house being different to a factory) or state (i.e. the differ-
ences may be accounted for by the state of attribute values). For example, we would be
unlikely to create a classification hierarchy such as that shown in Fig. 8.3. Here, we can
see that ‘Building’ is shown as the base class for both ‘tall building’ and ‘short building’.
This is not, however, an appropriate classification, since it actually relates to the state of
an attribute common to all buildings — their height. Since all buildings have a height, this
should be an attribute in the base class. While ‘tall building’ may be said to be ‘a kind of’
building, it does not in fact represent a distinct type. After all, what specific meanings
can we give to ‘short’ and ‘tall’? In cases where distinctions are not clear cut but seem to
be on a ‘sliding scale’, we are usually talking about differences in state rather than differ-
ences in behaviour.

112

8 Inheritance and classification hierarchies

Building

oooo| —v
HENINEN X

2 (U

Short Building Tall Building

Fig. 8.3: Inappropriate classification. The distinction between
tall and short buildings depends on state attribute.

Identifying differences in class

Given the above, how do we make distinctions between objects which differ in class, and
those of a single class which simply differ in state? Such decisions sometimes depend on
the context rather than any golden rule. For example, if we have a class called “vehicle’,
how might we inherit from it into subclasses? Would we make a distinction in terms of
separate classes between ‘goods vehicle” and ‘passenger vehicle’, or simply include an
attribute called ‘load type’” which may have ‘goods’” or ‘passenger’ as state values? The
answer is, it depends on what distinctions there might be between goods and passenger
vehicles in the context of the application. If the only distinction between them is their
load type, and all other attributes and behaviours will be the same, then only an attribute
is required. If, however, ‘load type’ is a key distinction between types which will lead to
different sets of behaviours (perhaps at a border crossing where each type has a separate
set of customs checks) then it may be appropriate to make a type distinction between
‘goods’ and ‘passenger’ vehicles. Even the short/tall building example would justify
different classes if the context (e.g. fire regulations) requires different behaviours.

Question 8.1 Draw a classification hierarchy with the class ‘tree’ at the bottom. Justify
your distinction between types, and suggest attributes which might be inher-
ited by derived classes. Suggest a class which might be ‘a part of one of
your classes {and therefore not part of the hierarchy).

An example might have ‘tree’ being the base class for ‘deciduous’ and “evergreen’, with perhaps ‘fruit bearing’
as a further subclass of ‘deciduous’. A simple attribute might be ‘height’. ‘Branch’ would be an example of ‘a part
of a tree, rather than ‘a kind of tree.

113

8 Inheritance and classification hierarchies

What do obijects inherit?

We have talked about the ability of classes to ‘inherit’ both attributes and methods from
‘base classes’, but what does this mean in practical terms? The key point is that we are
talking about inheritance between classes, not objects. Remember that a class does not
contain any state values, it only acts as the ‘blueprint’ to define what attributes each
object in the class will have. The state values of those attributes are contained in indi-
vidual objects. When we say that a ‘derived’ class inherits from a ‘base’ class, it means
that all the attributes and methods in the base class are automatically included in the
derived class. The derived class is therefore by default identical to a base class, but we
can build on it to further extend and refine it. Objects of the derived class do not inherit
anything from objects of the base class — as far as objects are concerned there is no hier-
archy. This is an important distinction, since it means that derived class objects do not
inherit any state values from base class objects.

Fig. 8.4 shows two classes, ‘Line’ and ‘Coloured Line’. Because ‘Coloured Line” has all
the attributes and methods of ‘Line’, plus the ability to be drawn in different colours, it is
appropriate to make it a derived class — ‘Coloured Line’ is a kind of ‘Line’. Note how the
attributes and methods of the base class are inherited - they will automatically be part of
the derived class definition. “Coloured Line’ objects can use both their own and inherited
methods, i.e. they will understand the messages ‘draw’ (an inherited method) and ‘set
colour” {(a method specific to their own class). However, when we create objects of the
two classes there is no reference between them in terms of attribute values. Objects have
their own states, independent of other objects.

CLASSES OBJECTS MESSAGES
UNDERSTOOD
LINE :
line
Attributes: object
start position
end position start = (x,y) draw (start,end)
end = (x,y)
Methods
draw

i

COLOURED LINE

coloured line
object

Attributes:
colour

draw (start,end)
set colour (col)

start = (x,y)
end = (x,y)
colour = ?

Methods
set colour

Fig. 8.4: ‘Coloured Line’ is a derived class of ‘Line’
and inherits its attributes and methods.

114

8 Inheritance and classification hierarchies

Specialisation - extending functionality

The example above, whereby the functionality of ‘Line’ is extended to produced a
‘Coloured Line” demonstrates a fundamental principle of object-orientation — creating a
new class by extending (specialising) one which already exists. Much object-oriented
software development centres on the re-use of existing software components (classes).
However, the particular class which a programmer requires for a specific application
may not be available. What object-orientation offers in such a circumstance is the ability
to extend an existing class to meet new requirements, without having to affect the orig-
inal class in any way. An abstract data type is both closed (in that it has an encapsulated,
private part which cannot be affected by external manipulation) and open (in that it
allows itself to be used as part of a larger software unit). The ‘Line’ class is unaffected by
being the base class for ‘Coloured Line’. The fact that the base class has been inherited
from does not affect it nor the ability to create objects from it. We can also derive as many
other classes from a single base class as we like, so we might for example have another
class called ‘Dotted Line” inheriting from ‘Line’” and adding the ability to draw itself as a
row of dots (Fig. 8.5). (What happens if you also want a ‘Coloured Dotted Line’ class will
be discussed in a later chapter on “multiple inheritance’).

Line
Coloured Dotted
Line Line

adds COLOUR adds PATTERN
attribute attribute

Fig. 8.5: The ‘Coloured Line’ and ‘Dotted Line’ classes
extend the existing functionality of the ‘Line’ class.

As another example of extending for re-use, we might take a situation where a
programmer needs a class to represent a timing device, perhaps in some kind of auto-
mated production control system. Let us assume that s/he already has a class available
(maybe s/he wrote it for another program, or maybe it comes from someone else’s class
library), and maybe this class is called “Timer’. It no doubt has a number of methods to
return the times between various start and stop states. It is just what the programmer
needs, except that in the context of the new program, a new unit of time has to be
applied. Perhaps the work schedules on the production line are divided into 10 minute
intervals which need to be included in the methods of the timer. What can the
programmer do? With object-orientation, it is a simple task for the programmer to
‘inherit’ all the existing functionality of the ‘Timer’ class into a new derived class
(Perhaps “Extended Timer’) and add the extra required functionality (Fig. 8.6)

115

8 Inheritance and classification hierarchies

TIMER

Methods: “i
start (%
stop ey
time in ...
time in ...
time in ...

i

EXTENDED TIMER

Methods:
time in work
units

Fig. 8.6: The ‘Extended Timer’ class extends the functionality of the “Timer’ class.

Question 8.2 In what sense is an existing class both ‘open” and ‘closed?

A class is ‘open’ in the sense that it is easily extensible through the mechanism of inheritance. However it is also
‘closed’ because inheritance does not compromise the integrity of the existing class.

Generalisation - sharing commonality

When analysing a particular application, we often find that some objects share some of
their attributes and associated methods with other objects. This raises the question of the
best way to partition a problem into abstract data types. Do we go for many closely
defined classes, which may mean the duplication of some shared attributes and methods
in different similar classes? Or do we have fewer classes to avoid duplication (putting
similar types into one general class) which will mean objects sharing some irrelevant and
redundant attributes and methods? To take an illustrative example of real world objects,
if we are modelling the animals in a zoo, do we have a separate class for every animal
(duplicating attributes such as ‘legs’ and ‘colour’) or do we have one giant ‘animal” class
which contains all possible animal attributes, not all of which would apply to any one
animal (only the duck billed platypus has both ‘fur’ and ‘beak’ as attributes! - Fig. 8.7 on
the following page). Inheritance allows us to resolve such problems because it enables
the sharing of common elements between classes without having to repeat their defini-
tion for each separate class.

116

8 Inheritance and classification hierarchies

Many
classes ...

Legs Scales
. ... OF one
Wings F class.

Tusks ur
Beak

Fig. 8.7: Without inheritance, we face a choice between many
overlapping classes or one over-general class.

Abstract classes

We will often find that some of the base classes in our hierarchies do not represent
anything concrete enough to instantiate as objects in their own right. Such a class only
exists as a “holder’ for the shared (inherited) attributes and methods of derived classes
and is known as an ‘abstract’ class, because it does not represent a concrete type of
object. From a previous example, a class such as ‘Building’ does not in itself represent
anything other than a generalisation defining the shared characteristics of other classes.
Such classes cannot usefully be used to instantiate objects without the further detail
provided by the specialised derived class types. In a large classification hierarchy there
may be many “abstract classes’” which represent only parts of objects and are not instanti-
ated in their own right. To ensure that only appropriate classes are instantiated, it is
possible when implementing the code to create ‘pure’ abstract classes which are explic-
itly declared as abstract and cannot be used to create objects.

In creating an ‘animal” hierarchy, we will probably find several levels of abstraction. We
might begin with a base class ‘animal’ which would contain the attributes and methods
common to all animals. From this we might derive more specific (but still abstract)
classes such as mammals and birds. Such a hierarchy could be very large and complex,
but only the specific classes at the bottom of the hierarchy would represent concrete
types of animal (Fig. 8.8). Indeed we would probably have to go further than this in prac-
tice, since ‘pig’ for example is really rather abstract — each breed is ‘a kind of’ pig with
breed-specific behaviours.

117

8 Inheritance and classification hierarchies

Fig. 8.8: Base classes are frequently ‘abstract’ - they are not
specialised enough to represent objects without further detail.

It is not the case however that a base class is always abstract. For example, in an elec-
tronic circuit simulation program we might use the class ‘Resistor” as the base class for a
number of types of resistor — e.g. those which are affected by heat ("ThermoResistor’)
and light (‘PhotoResistor’). However, the base class still represents an actual component,
s it is perfectly reasonable to instantiate objects of type ‘Resistor” as well as objects of
the classes which inherit from it (Fig. 8.9).

Resistor

V\

ThermoResistor

PhotoResistor

Variable Resistor

Voltage dependent Resistor

Fig. 8.9: Not all base classes are abstract. ‘Resistor’ is both a concrete class
(able to be instantiated) and a base class for specialisations.

Question 8.3 How can inheritance reduce duplication of attributes and methods in
different classes?

Inheritance allows attributes and methods common fo two or more classes to be ‘pooled” into a separate base
class from which other derived classes may inherit. Such a base class may be ‘abstract’ - not intended for
instantiation.

118

8 Inheritance and classification hierarchies

Creating a class hierarchy

As a practical example of sharing common attributes and methods using the generalisa-
tion approach to inheritance, we might look at an ‘Employee’ class appropriate to a
company’s personnel records. Employee attributes might include details which are
applicable to all employees, such as their name and position. However, other attributes
might only apply to certain members of staff, such as ‘department number’ (members of
the board may not be in any particular department), or ‘salary’ (which would not apply
to some workers who are hourly paid). Without inheritance we would have to either
create completely separate classes for ‘Director’ and ‘Hourly paid worker” (and all other
types of employee, duplicating many attributes and methods for each class), or create a
large general class of ‘employee’. In the latter case we would have to include all possible
attributes and methods of any employee in the class, meaning many would not be
applicable to particular employee ‘objects’. As with our ‘animal’ scenario, this leads to
much redundancy and unnecessary complication.

Using inheritance, we can put all the attributes and methods which apply to all
employees into a base class (an abstract ‘employee’). We can then inherit from this class
to create more specialised classes for various employee categories. These would add
their own attributes and methods to those inherited from the employee class.

In this way the basic class can be built on to cater for all types of employee which exist
now or may exist in the future. "Employee’ is an example of an “abstract’ class, since it
would not be appropriate to instantiate objects from it. To represent the employees that
exist in the real world, some further detail must be supplied by derived classes before
useable objects can be instantiated.

Depending on the sets of shared attributes and methods identified in the system, a
complex multi-level hierarchy might be developed such as that in Fig. 8.10.

Employee
Director ‘ Salaried Hourly Paid
Executive Non-executive Permanent Contract Casual
N
Short Term Long Term

Fig. 8.10: Some classification hierarchies may be complex and multi-level.

Inheritance and object-orientation

Inheritance is a key feature of object-orientation, because it allows us to implement
‘polymorphism’, itself a mechanism for generalising the processes in our programs to
work with disparate sets of objects. In addition to the benefits outlined above, whereby

119

8 Inheritance and classification hierarchies

inheritance reduces duplication and allows existing classes to be reused, inheritance
allows us to treat all objects in a class hierarchy in the same way. In later chapters we will
see how this gives us control over large sets of dynamic objects.

C++ Syntax

Syntax introduced
The following new syntax is introduced to allow inheritance in C++
1. The colon operator (:) to denote inheritance
2. ‘public’ and ‘private” derivation of object methods from a base class

3. The “protected:’ keyword to allow derived classes to access inherited attributes

Inheriting from a base class - the colon operator

We will begin with a very simple class which represents a single integer. The class defin-
ition below shows the class (‘BaseClass’) which has one attribute (‘x’) and two methods,
‘setX’ and “getX’. This class does not on its own include any aspects of inheritance. The
two methods are declared in-line as they are very short:

class BaseClass

{
private:
int x;
public:
void setX(int x_in)
{
X = x_in;
}
int getX()
{
return Xx;
}
b

The following derived class definition (‘DerivedClass’, which will represent two inte-
gers) demonstrates the syntax used for inheritance. The derived class will inherit the
attribute ‘x’ from the base class and have access to the public methods ‘setX’ and “getX".
It also extends the functionality of ‘BaseClass’ by adding its own attribute (‘y’) and the
methods ‘setY’ and ‘getY’. These are exclusive to the derived class, and cannot be used
by objects of the base class. In other words, objects of the base class contain one integer
(the X’ attribute) and its associated methods but objects of the derived class will contain
two integers (the ‘x” and “y” attributes) and the methods associated with both.

In order for ‘DerivedClass’ to inherit from ‘BaseClass’, the colon operator follows the
class name, and then the derivation type and the name of the class from which it inherits:

class derived_class_name : public/private base class_name

Derivation - public or private?

The derivation type may be either ‘public’ or “private’. Public derivation is the more
usual type, and is used for the examples in this book. It allows objects of a derived class
access to the public part (usually the methods) of the base class as well as its own class.

120

8 Inheritance and classification hierarchies

Private derivation is less common, and means that a derived class object may only use
the methods defined in the derived class, not those inherited from the base class.
However, derived class methods may utilise base class methods to implement their own
behaviour.

In this example, ‘DerivedClass’ is derived publicly from ‘BaseClass’:

class DerivedClass : public BaseClass

{
private:
inty;
public:
void setY(int y_in)
{ -
y=y_in;
}
int getY()
returny;
}
I3

If we use these classes in a program, then we can instantiate objects of both classes.
Objects of the base class will have the attributes and methods of the base class only, but
derived class objects will have both these and the attributes and methods defined in the
derived class, as follows:

#include <iostream.h>
void main()
{
// create an instance of each of the classes
BaseClass base_object;
DerivedClass derived_object;
/1 set the x attribute value for the base class object
base_object.setX(7);
/1 set both the x and y attribute values for the derived class object
derived_object.setX(12);
derived_object.setY(1);
/1 display the value of the x attribute which both objects have
cout << "base x =" << base_object.getX() << endl;
cout << "derived x = " << derived_object.getX() << endl;
/1 display the value of the y attribute which only the derived class object
// has
cout << "derived y = " << derived_object.getY() << endl;

}

The output from the program looks like this:
base x =7

derived x = 12
derivedy =1
Accessing inherited attributes - the ‘protected’ keyword

The previous program demonstrated that an object of a derived class can use the public
methods of a class from which it inherits. It cannot, however, access the private attributes

121

8 Inheritance and classification hierarchies

of the base class, and neither can its methods. In other words, although an object of class
DerivedClass’ can use ‘BaseClass’ methods which access attribute “x’, its own methods
cannot refer directly to that attribute. This can cause problems when we need to imple-
ment certain methods.

For example, let us assume that we wish to add a method to the derived class which will
make the value of the ‘x attribute of an object equal to the value of the y” attribute. It
might look like this:

void DerivedClass::xEqualsY()

{
}

This seems simple enough, since any object of the derived class will have both an ‘x’
attribute and a 'y’ attribute. However, we are unable to legally express ‘x =y’ with our
current base class, as ‘X’ is declared as ‘private’ and we are only allowed to access the
public part of the base class.

x=Y;

To overcome this problem, we can replace the ‘private’ keyword in the base class with an
alternative keyword: ‘protected’, allowing the derived class direct access to its own
attribute ‘x’. The ‘protected’” keyword thus allows derived classes access to attributes
inherited from a base class, without making them public.

In the following example, the use of ‘protected’ attributes in the base class allows us to
implement the derived class method ‘xEqualsY’. Only the changes to the class defini-
tions and program have been included — other elements would remain unchanged.

class BaseClass
{
// note the use of the ‘protected’ keyword. this allows methods in
// derived classes to refer to their own X’ attribute by name
protected:

int x;

class DerivedClass : public BaseClass

{
void xEqualsY()
{
X=Y;
}

We can now use this method since it is able to access both the “y” attribute and the inher-
ited ‘X’ attribute, and update the ‘x” attribute directly. If we add the following lines to our
previous program, we can see that this is the case:

void main()

{

derived_object.xEqualsY();
cout << "derived x = " << derived_object.getX() << endl;

122

8 Inheritance and classification hierarchies

Running our revised program, we get the following output, showing the alteration of the
X" attribute in the derived class object to equal the value of ‘y’:

basex=7
derived x = 12
derived y = 1

derived x =1

Question 8.4 What advantage do we have when inheriting from a class whose attributes
are ‘protected’ rather than ‘private’, and what does ‘public derivation’
mean?

If we inherit from a class whose attributes are “protecied’ then we can refer to these inherited attributes in methods
of the derived class. Otherwise we only have access to the public part of the class. *Public derivation’ means that
objects of the derived class can use public methods of the base class. ‘Private derivation’ means that only derived
class methods can be used by derived class objects, i.e. inherited public methods become private in the derived
class.

The ‘employee’ example

The previous example outlines the syntax required for inheritance, but does not provide
very interesting or useful objects. We referred earlier to the use of inheritance in a set of
classes representing company employees. In order to code a simplified example based
on this scenario we will assume that the following attributes are appropriate to three
different types of employee.

Director: personnel ID, name, shareholding
Salaried Worker: personnel ID, name, department number, annual salary
Hourly Paid Worker: personnel ID, name, factory section, hourly rate

Although these attributes are a small subset of the likely data in a real employee records
system, they should be enough to demonstrate the application of inheritance. In this
case, we can use inheritance to avoid duplicating the shared attributes (‘personnel I,
which we will assume to be an integer code number, and ‘name’) in separate classes by
pooling the common attributes into an “abstract’ base class called ‘employee’. We can
then extend this class by inheriting from it into the three ‘concrete’ classes which add
their own class-specific attributes (Fig. 8.11).

The UML notation used here to indicate inheritance is a rather more formalised version
of the arrows seen in earlier figures. A single (outline) arrow head points to the base
class, with lines joined to all derived classes. This version of the notation is typically seen
in CASE tools. Note that the attribute ‘employee count’ is underlined to show that it is a
class (static) attribute, likewise the ‘get employee count’ method.

123

8 Inheritance and classification hierarchies

Employee

employee count
personnel id
name

get employee count

get 1D
get name
Director Salaried Worker Hourly Paid Worker
shareholding annual salary hourly rate
get shareholding get salary get rate

Fig. 8.11: Classification hierarchy for the ‘employee’ example using UML notation.

The organisation of the source code

In previous code examples we have typically dealt with one, or at most two, simple
classes, and for the sake of simplicity we have seen header files containing both class and
method definitions. This approach, whilst acceptable for very short examples, does not
scale up to larger systems due to the potential for linker errors where header files are
included in more than one other file, and can also lead to excessive compilation times.
The following example (comprising as it does four classes) demands a more flexible
structure. This involves separating the class definitions (in header files) from the defini-
tions of their methods (in separate .CPP files), with the 'main’ function in a separate file
again. This means that each .CPP file must be separately compiled before the whole
program is linked together. You will need to use the facilities of your particular compiler
to link the .OB]J files generated by compilation into an executable, but modern develop-
ment environments have simple tools to do this.

In this example, we still have a single header file, but the method definitions and "main’

appear in separate .CPP files. This is the header file:
/*
EMPLOYEE.H header file for the 'Employee’ class and its derived classes,
'Director’, 'Salaried' and 'HourlyPaid'
*f
// class 'Employee’
class Employee
{
protected:
static int employee_count;

124

8 Inheritance and classification hierarchies

int personnel_id;
char name[30];
public:
Employee();
static int getEmployeeCount();
int getlD();
char* getName();
h
/f class 'Director’, inherits from 'Employee’
class Director : public Employee
{
private:
int shareholding;
public:
Director();
int getShareholding();
k
/l class 'Salaried’, inherits from 'Employee’
class Salaried : public Employee
{
private:
float annual_salary;
public:
Salaried();
float getSalary();
b
/l class 'HourlyPaid', inherits from 'Employee'
class HourlyPaid : public Employee
{
private:
float hourly_rate;
public:
HourlyPaid();
float getRate();
5
// end of EMPLOYEE.H

Each of the three classes has a separate file containing the definitions of its methods.
These are the methods for the ‘Employee’ class. Note that the reservation of memory for
the class attribute takes place in the .CPP file, not in the header file:

/*
EMPLOYEE.CPP method definition for the 'Employee’ class
*/
#include "employee.h"
#include <iostream.h>
// reserve memory for the class attribute 'employee_count' (defaults to zero)
int Employee::employee_count;
// 'Employee' constructor
Employee::Employee()
{
// increment the employee count
employee_count++;
// generate a unique id from the employee count
personnel_id = employee_count;
/I get the name from the keyboard
cout << "Enter employee name ";
cin >> name;

125

8 Inheritance and classification hierarchies

}

J/ class method to return the employee count
int Employee::getEmployeeCount()
{

}

// selector method to return the personnel id
int Employee::getiD()
{

}
// selector method to return the employee's name
char* Employee::getName()

{

return employee_count;

return personnel_id;

return name;

}
/l end of EMPLOYEE.CPP

This is the file containing the definitions of ‘Director’ methods.

/*
DIRECTOR.CPP method definitions for the Director class
*/
#include "employee.h"”
#include <iostream.h>
// Director constructor
Director::Director()
{
// get the shareholding from the keyboard
cout << "Enter shareholding for * << name << " ";
cin >> shareholding;
}
// Director selector method
int Director::getShareholding()
{

return shareholding;

}
// end of DIRECTOR.CPP

The salaried worker file:

126

/*
SALARIED.CPP method definitions for the 'Salaried' class
*/
#include "employee.h"
#include <iostream.h>
// Salaried constructor
Salaried::Salaried()
{
// get the annual salary from the keyboard
cout << "Enter annual salary for " << name <<" "}
cin >> annual_salary;

/] Salaried selector method
float Salaried::getSalary()

{

return annual_salary;

}
// end of SALARIED.CPP

8 Inheritance and classification hierarchies

Finally, this is the file of method definitions for the ‘HourlyPaid’ class (perhaps it should

be the “Working’ class?):

/*
HOURLY.CPP method definitions for HourlyPaid class

*/

#include "employee.h"

#include <iostream.h>

// HourlyPaid constructor

HourlyPaid::HourlyPaid()

{

/ get the hourly rate from the keyboard
cout << “Enter hourly rate for ” << name << “ ”;
cin >> hourly_rate;

}

// HourlyPaid selector method

float HourlyPaid::getRate()

{

return hourly_rate;

}
/I end of HOURLY.CPP

The program in ‘main’ instantiates objects of the three derived classes to estimate the
annual payments to the different categories of employee in dividends, salaries and wages.

/'k
EMPMAIN.CPP Program to demonstrate objects of the derived classes of '‘Employee’
*/
#include “employee.h”
#include <iostream.h>
void main()
{
/' use constants to size the arrays used to contain employees
const int DIRECTORS = 2;
const int SALARIED = 2;
const int HOURLY_PAID = 4;
/I use constants to set a standard dividend and working hours in a year
const float DIV_PER_SHARE = 3.50;
const int HOURS_IN_YEAR = 40 * 52;
// create 3 arrays of the different employee types using the constants
/I (very small to make the program easy to test). the constructors will be
// called here, asking for keyboard input
cout << “Directors:” << endl;
Director directors[DIRECTORS];
cout << end| << “Salaried workers:” << endl;
Salaried salaried[SALARIED];
cout << endl << “Hourly paid workers:” << endl;
HourlyPaid hourly_paid[HOURLY_PAID];
/I 7" is used as a loop index
int i;
// initialise temporary stores
float total_dividend = 0, total_salary = 0, total_wages = 0;
// iterate through the directors array, working out their total dividends
for(i = 0; i < DIRECTORS; i++)
{
cout << “Processing director, ID number ” << directors[i].getlD() << endl;
total_dividend += (directors][i].getShareholding() * DIV_PER_SHARE);
}

127

8 Inheritance and classification hierarchies

// iterate through the salaried array, working out total salaries
for(i = 0; i < SALARIED; i++)
{

cout << “Processing salaried worker, ID number ” << salaried{il.getID() << endl;
total_salary += salaried[i].getSalary();

/ iterate through the hourly paid array, working out total wages
for(i = 0; i < HOURLY_PAID; i++)
{

cout << “Processing hourly paid worker, ID number ” << hourly_paid[i].getlD() << endl;
total_wages += (hourly_paid[i].getRate() * HOURS_IN_YEAR);

}
// display the results
cout << endl << “Payments due to workforce of ” << Employee::getEmployeeCount()
<< " are:" << endl;
cout << endl << “Total dividends: £” << total_dividend << endl;
cout << “Total salaries: £” << total_salary << endl;
cout << “Total wages: £” << total_wages << endl;

}
Running the program causes the various constructors to take data from the keyboard
before calculating and displaying the results. Notice that each time an object is instanti-
ated, the base class constructor (in “‘Employee’, which asks for the employee's name) is
called first, followed by the constructor for that particular derived class

Directors:

Enter employee name Black

Enter shareholding for Black 500

Enter employee name White

Enter shareholding for White 150

Salaried workers:

Enter employee name Brown

Enter annual salary for Brown 20000

Enter employee name Green

Enter annual salary for Green 15000

Hourly paid workers:

Enter employee name Scarlet

Enter hourly rate for Scarlet 5.00

Enter employee name Magenta

Enter hourly rate for Magenta 7.50

Enter employee name Mysteron

Enter hourly rate for Mysteron 3.50

Enter employee name Indestructible

Enter hourly rate for Indestructible 4.50
Processing director, ID number 1
Processing director, ID number 2
Processing salaried worker, ID number 3
Processing salaried worker, ID number 4
Processing hourly paid worker, ID number 5
Processing hourly paid worker, ID number 6
Processing hourly paid worker, ID number 7
Processing hourly paid worker, ID number 8

128

8 Inheritance and classification hierarchies

Payments due to workforce of 8 are:

Total dividends: £2275
Total salaries: £35000
Total wages: £42640

Inheriting constructors

A derived class will always inherit the constructor of the base class, as well as having its
own. The base class constructor is always called first, followed by the derived class, and
so on down the tree if there are several levels of inheritance. This is because a constructor
reserves memory appropriate to the needs of its class — an inherited constructor reserves
memory for inherited attributes. In the example program, the constructor will be called
for each object in the array. In each case, the ‘Employee’ constructor is executed first,
followed by the specific constructor for the derived class being instantiated. Note how
the name of the employee which is captured by the base class constructor is used in the
derived class constructors.

If the base class constructor takes no parameters, then this inheritance of the constructor
is implicit, but if it does take parameters, then these must be stated explicitly in each
derived class. This is because a derived class constructor looks for a base class
constructor with a matching argument list. In the following example, we have a frag-
ment of a ‘Customer’ class which takes the name of the customer as an argument to the
constructor (use of the ‘strncpy” function assumes inclusion of the ‘string.h’ header file.)

class Customer

{
private:
char customer_name[30];
public:
Customer(char* name_in);
b
Customer :: Customer(char* name_in)
{
strncpy(customer_name, name_in, 29);
customer_name[29] = \0’;
}

Any constructors of derived classes must also take this parameter. The following
example shows the constructor prototype of a derived class called ‘ AccountCustomer”:

class AccountCustomer : public Customer
{
private:
int account_number;
public:
AccountCustomer(char* name_in);
b
The constructor definition must explicitly refer to the names of the base class constructor
and the inherited parameter as follows:

AccountCustomer::AccountCustomer(char* name_in) : Customer(name_in)

{
}

// constructor body

129

8 Inheritance and classification hierarchies

Note that the “AccountCustomer’ constructor has to re-iterate the inherited constructor
parameter (‘name_in’), and that the colon operator is used to indicate inheritance (in a
similar way to its use in the derived class definition). The type of the parameter (char* in
this case) is not used in the base class parameter list, only its name.

Question 8.5 Why might we want to inherit the parameters fo a constructor?

Since parameters to a constructor are usually to initialise the object on instantiation, and derived class objects
inherit the atiributes of base classes, it is reasonable to assume that any initialisation appropriate to a base class
object is probably appropriate to o derived class object.

It is also possible to add to the parameter list when defining derived class constructors.
If we wished to pass the account number as a parameter to the ‘AccountCustomer’
constructor, it could be added to the parameter list as follows:

/I the prototype...

AccountCustomer(int number_in, char* name_in);

// and the constructor definition...
AccountCustomer::AccountCustomer(int number_in, char® name_in): Customer(name_in)

{
}

Instantiated objects of the derived class would use the inherited parameter for the base
class constructor, and the additional parameter for their own constructor. Objects of the
two classes might be instantiated as follows:

account_number = number_in;

void main()

{
Customer a_customer("Jane");
AccountCustomer another_customer(1, "John");
// efc...

}

Inheriting destructors

Derived classes also inherit the destructors of base classes, and these are called in the
reverse order of the constructors. For example, if class B inherits from class A, and class
C inherits from class B. then the sequence of constructor calls for an object of class C
would be A, then B, then C. In contrast, its sequence of destructor calls would be C, then
B, then A. Since destructors cannot take arguments, explicit inheritance of parameters is
not an issue.

Summary of key points from this chapter

1. Inheritance allows classes to inherit attributes and methods from other classes in a
classification hierarchy.

2. Inheritance allows specialisation (extending the functionality of an existing class)
and generalisation (sharing commonality between two or more classes).

3. Inheritance is appropriate where a class can be said to be “a kind of “ other class.

4. Inheritance allows use to reuse existing classes to create new classes which are
appropriate to a particular application — this is specialisation. Inheriting from a class
does not affect the integrity of that class — objects of the original class may still be
instantiated.

130

8 Inheritance and classification hierarchies

5. Generalisation assists us in removing redundancy and duplication among classes,
and gives us a semantic organisation via the classification hierarchy.
6. Some base classes are abstract — they are not specific enough to be instantiated as
objects, but act as holders for common attributes and methods of derived classes.
7. In C++, the ‘protected” keyword allows the methods of a derived class access to its
inherited attributes.
8. Base class constructor methods are automatically called by the constructors of
derived classes, but argument lists must be compatible.
9. Destructors are called in the reverse order of constructors.
Exercises
1. Here are two class definitions (attributes only). Using generalisation, put them into
an appropriate classification hierarchy so that they both inherit from a common base
class.
Add appropriate methods.
class Book class Magazine
{ {
private: private:
char title[30]; char title[30];
char author{30]; char editor[30];
char publisher[30}; char publisher[30];
char ISBN[20]; IS
b
2. Assuming a need to write a library application, specialise from the ‘Book’ class to
create a ‘LibraryBook’ class. This needs additional behaviours such as being lent,
returned and reserved.
3. In Chapter 5, we added a user-defined constructor to the ‘BankAccount’ class, with a

float parameter to set the initial balance. The constructor prototype looked like this
(removing the default value which we also described):

BankAccount(float start_balance);
This exercise assumes that you have a BankAccount class with this user-defined
constructor.
Create two new classes by inheriting from the existing BankAccount class. They are
to be called ‘SavingsAccount’ and ‘ChequeAccount’. Modify the ‘BankAccount’ class
header file to contain the two derived class definitions outlined below.
SavingsAccount
Create a derived class of BankAccount called ‘SavingsAccount’” which adds the
attributes of “‘withdrawal_notice’ (the number of days notice needed before money
can be withdrawn) and ‘interest_rate’. Methods should be defined to allow the
values of these attributes to be returned.
ChequeAccount

Create another derived class of BankAccount called ‘ChequeAccount’ which adds
the attribute of “allowed_overdraft’ (how far the account may be overdrawn without
incurring a penalty). A method should be included to return its value.

131

8 Inheritance and classification hierarchies

132

In both cases, the initial values of the additional attributes should be set using para-
meters to the constructor. Explicitly inherit the (‘start_balance’) parameter from the
base class constructor in the definitions of both of the derived class constructors.

Demonstrate the use of the derived classes as follows:

(a) Instantiate an object of the ‘SavingsAccount’ class called ‘savings_accountl’.
Using the parameters to the constructor, set the start balance to £100.00, the with-
drawal notice to 30 days and the interest rate to 3.5%. Using appropriate
methods, set the account number to 1 and the holder to ‘Solent University’.

(b) Instantiate an object of the ‘ChequeAccount’ class called ‘cheque_account_1".
Using the parameters to the constructor, set the start balance to £0.00 and the
overdraft limit to £500. Using appropriate methods, set the account number to 2
and the holder to ‘SIHE".

(c) Display all the details of both ‘savings_accountl” and ‘cheque_accountl’.

9 Associations and aggregations

Overview

This chapter introduces associations (links between objects) and aggregations (objects
that are composed wholly or partly of other objects.) Types of aggregation are described
and contrasted with inheritance and container classes. Some characteristics of aggrega-
tion are explored along with the different forms of C++ syntax required to implement
association and aggregation.

Associations

In previous chapters we have seen a number of example programs that show objects of a
single class being ‘sent messages’ (i.e. having their methods called) within a ‘main’ func-
tion. This, however, does not address the issue of how objects communicate with each
other.

In any object-oriented system, we would expect to have many objects of different classes
sending each other messages as the program runs. In order to do this, we have to
provide links between objects which allow them to communicate. At the level of class
design, these links are known as “associations’, and come in three main types:

1. aone to one association, where one object of a class has a link to one other object of a
class

2. aone to many association, where one object of a class has links with many objects of
a particular class

3. amany to many association, where many objects of one class have links with many
objects of a particular class.

Associations more frequently occur between objects of different classes, but also occur
between different objects of the same class. A ‘BankBranch’ object for example may have
an association with ‘BankAccount’ objects, but perhaps another association with other
‘BankBranch’ objects.

Design representation of associations

In most object-oriented design notations, associations are indicated by some kind of line
between the classes. In the UML, a simple line indicates a one to one association, with
modifiers to indicate other types. Associations should be given a text label to describe
the relationship between the objects, and a small arrow head can be added to the label to
indicate the direction of the relationship (Fig. 9.1).

133

9 Associations and aggregations

a one-to-one association

a one-to-many association

*

a many-to-many association
* *

numbers or ranges can be used if known:
a ‘zero or 1’ to ‘exactly 10" association

0..1 10

a text label with direction indicator

associates with B

Fig. 9.1: The UML notation for associations

The direction of message peassing

When associations are modelled in a design, they are generally assumed to be bidirec-
tional; that is, messages can pass in both directions between the objects. However, it is
frequently the case in an implementation that there is no need for a link in both direc-
tions. As an analogy, consider a light switch and a light bulb. The switch controls the
bulb, but the bulb has no control over the switch. Similarly, we often find cases in soft-
ware when one object needs to send messages to (and get responses from) another
object, but there is never any need for the other object to initiate messages itself. Like the
light bulb, it is a “dumb’ object (it never asks any questions, it only obeys orders!) In
contrast, a bidirectional link, in this case between objects of the same class, might be two
‘Person’ objects who marry. One would hope that, unlike the light bulb and switch rela-
tionship, messages pass in both directions. Fig. 9.2 shows these relationships in UML
notation; a link in one direction can be shown by adding an arrow head to the association
line. As well a labels (e.g. ‘married to’), associations can have ‘role names’ (e.g. "husband’
and ‘wife’) attached to the appropriate ends of the line.

134

9 Associations and aggregations

) Controls & .
Switch Light bulb
husband
Person
wife
Married to

Fig. 9.2: Associations may need to be implemented
in one direction only or in both directions.

Booch uses the term ‘actor” for an object that acts upon other objects, ‘server’ for an
object that is only acted upon, and ‘agent’ for an object that does both [Booch, 1994 p.99].
Many object-oriented systems will have a single actor (or ‘controller’) object which
manages the system interface and forwards messages to various agents and servers.

Associations in applications

The examples above do not have much direct relevance to programming. A more useful
approach might be to look at possible associations in a given application, such as a class
timetabling system that allows lecturers to be allocated to course modules that are in
turn assigned to classrooms. In this application we might find a number of ‘one to many’
associations (where one object has links with a number of other objects), such as the rela-
tionship between a lecturer and the course modules s/he teaches. Assuming there is no
double staffing, one lecturer teaches many modules, but each module has only one
lecturer. This kind of link would probably be implemented in both directions, so that our
timetabling system might allow us to query the lecturer object for its associated modules,
but also to query a given module for its associated lecturer object. We might also
discover many to many associations like an association between modules and rooms;
one module may be taught in many classrooms, and each classroom plays host to many
different modules. A one to one association might exist between a lecturer and his/her
teaching contract, so that each lecturer has one contract (perhaps detailing their indi-
vidual teaching, research, consultancy and administration hours) and each contract
applies to an individual lecturer. All these associations are shown in Fig. 9.3.

Teaches B =
Lecturer Module
*
Teaches to ¥ Takes place in ¥
*
Contract Classroom

Fig 9.3: The associations in the timetable example.

135

9 Associations and aggregations

Aggregation v. inheritance

In the previous chapter we looked at classification hierarchies where classes inherit from
other classes in order to share or extend functionality. We saw how objects are classified
by their position in a hierarchy as ‘a kind of” (AKO’) other object, e.g. an estate car is a
kind of car which is in turn a kind of vehicle (Fig. 9.4).

Vehicle

ST T T T oS T T N

s ~
e ~
¢ I
I I
| s TN TN |
|___(___1_____(__L__J

_,/ \,/

Car

Estate car

Fig. 9.4: In classification hierarchies, each level is a kind of ({AKO’) the level above.

Some associations also form hierarchies, but they are very different from inheritance.
These special types of association are described by various terms, including the
following:

e Aggregation

e Composition

e Part-Whole

e A Part Of (APO)

e Has-a

o Containment

In this type of hierarchy, classes do not inherit from other classes, but are composed of
other classes. What this means in practice is that an object of one class may have its
representation defined by other objects rather than by the attributes (simple data types
and data structures) we have used so far. The enclosing class does not inherit any attrib-
utes or methods from these other included classes, so it is not a classification relation-
ship. Rather, it is a relationship (an association) between objects. An object of the

enclosing class is composed wholly or partly of objects of other classes. Any object that
has this characteristic is known as an ‘aggregation’.

136

9 Associations and aggregations

Question 9.1 Suggest an example of an ‘aggregation” and its component parts.

There are many possible answers here, for example: a computer whose components are screen, keyboard,
mouse and processor box, or a flower whose components are stem, leaves, head and petals.

Containment v, confainers

A commonly used term for this type of class relationship is ‘containment’, but there is a
semantic difference between this term and the idea of a ‘container’ which also may
contain objects of other classes, but does not depend on them for its representation.
Therefore, although they can both be seen as types of aggregation, we should draw an
important distinction between containment and containers, as follows:

1. In ‘containment’, a composition hierarchy defines how an object is composed of
other objects in a fixed relationship. The aggregate object cannot exist without its
components, which will probably be of a fixed and stable number, or at least will
vary within a fixed set of possibilities.

2. A’container’ is an object (of a ‘container class’) which is able to contain other objects.
The existence of the container is independent of whether it actually contains any
objects at a particular time, and contained objects will probably be a dynamic and
possibly heterogenous collection (i.e. the objects contained may be of many different
classes).

Fig. 9.5 contrasts containment and a container using the example of a’car. One end of a
car (usually the front) comprises the engine compartment (with its integral component,
the engine), and the other is storage space for luggage (the boot). The relationship
between the car and the engine is one of containment; the engine is an essential compo-
nent of the car. A car object which does not consist partly of an engine object is not a car,
since it is unable to exhibit the behaviour expected of one. In contrast, the integrity of the
car as an object is not affected by what is in the boot, which is simply a ‘container’,
existing independently of its contents.

Engine Luggage

Fig. 9.5: The car and its engine have a containment relationship. In contrast,
the boot is a container, existing regardless of what it contains.

It may contain a suitcase, a tool kit, 500 bananas or nothing at all, but this does not affect
the car object. Container classes will be discussed in chapter fifteen. In practice, there is a
range of possibilities between these two extremes of fixed components and flexible
containers where the idea of aggregation may be applied. Indeed, we should also make a
distinction between ‘aggregation” and ‘composition” in the UML, where composition is

137

9 Associations and aggregations

seen as a stronger form of aggregation. Although it is not necessarily easy to draw the
line between them, the examples that follow may help.

Question 9.2 What is the key difference between ‘containment’ and a ‘container’?

‘Containment’ implies that the aggregate object is made up of components; without the components the object
could not exist. ‘Containers’ exist independently of their contents; they are simply able to contain other objects.

Composition: ‘parts explosions’

A common analogy for composition is the ‘exploded parts’ diagram, or “parts explosion’
commonly used for pieces of machinery. The whole component (a clock for example) is
shown in a diagram of ‘exploded’ parts, so that we see all the different internal discrete
objects that compose the whole discrete object. In UML notation, this is represented by a
solid diamond on the class of the object that is made up of the components (Fig. 9.6).

Case

Minute
Hand

Fig. 9.6: A ‘parts explosion’ shows the discrete components of an aggregate object.

These compositions of objects may well exist in several layers, so that objects are
composed of component objects which themselves are composed of other objects. The
‘works” component of the clock, for example, would itself be composed of a collection of
smaller parts.

Aggregation or composition?

The objects which comprise parts of a larger object may or may not be “visible’ from
outside the object. Composition implies that the internal objects are not seen from
outside, whereas aggregated objects may be directly accessed. Some components have a
‘lifetime dependency’; that is, their existence depends on being part of the aggregation,
while others might have an existence independent of the larger object. Aggregations
suggest that objects have some visibility or existence outside the hierarchy, such as a
three piece suite where the objects are part of an aggregation, but can also be seen to have
a separate existence. The distinction is not that important, but is drawn differently in the
UML, with a hollow rather than a filled diamond. Perhaps we can make a distinction in
the case of the clock between composition (the components in Fig. 9.6) and aggregation
in terms of the clock battery. The battery is a component, but it has a lifetime and visi-
bility independent of the rest of the clock (Fig. 9.7).

138

9 Associations and aggregations

Clock K>——— Battery

2

Hand Face Works

Fig. 9.7 UML notation uses a solid diamond to indicate a composition
relationship, but an outline diamond for more flexible aggregations.

Abstraction and aggregation

Aggregation is primarily a relationship between objects, rather than a relationship
between classes. When we discussed classification hierarchies, we saw that many of the
classes that served as base classes were abstract; they did not represent objects that could
usefully be used in a program. In contrast, the elements of a composition hierarchy must
be objects at run time in order to create an object of the aggregate class. For example, to
make a ‘Door’ object we must also instantiate objects of classes lock, handle, hinge,
letterbox etc, but we do not need to instantiate an object of class “Vehicle’ in order to
make a ‘Bus’.

Properties of aggregations

Rumbaugh [Rumbaugh et al, 1991 p.37] notes that there are certain properties associated
with the objects in an aggregation that make them different from normal associations.
Taking a graphics drawing program as an example, we can make certain distinctions
(Fig. 9.8):

propagation

antisymmetry

bar.move()

\ \
rectangle —

T~

| 3dbar
transitivity \ \“

Fig. 9.8: Properties of an aggregation are founded
on the relationships between composing objects.

line

Transitivity if A is a part of B and B is part of C, then A is part of C e.g. If ‘line’ is part
of ‘rectangle’, then ‘line’ is also part of ‘3D bar’.

Antisymmetry if A is part of B, then B is not part of A e.g. If ‘line” is part of ‘rectangle’,
then ‘rectangle’ cannot be part of ‘line’. This makes the aggregation rela-
tionship more “unequal’ than simple associations.

139

9 Associations and aggregations

Propagation The environment of the part is the same as that of the assembly e.g. What
happens to the 3D bar affects what happens to the components. If 3D
bar’ is moved or deleted then so is ‘rectangle’ and ‘line’. Again, this is
different to an association where the objects are independent of each
other and simply communicate.

Aggregation can be fixed, variable or recursive:

Fixed The particular numbers and types of the component parts are prede-
fined. e.g. a rectangle is composed of four right angled lines enclosing an
area.

Variable The number of levels of aggregation is fixed, but the number of parts

may vary. In a graphical user interface, a ‘window” object may consist of
components from a given set of possibilities (title bar, control buttons,
scroll bars etc) but the ones used are not always the same.

Recursive The object contains components of its own type, like a Russian doll (each
one containing a smaller doll). An object of the ‘graphics object’ class in a
computer aided design program may be composed of other objects of the
same class (and so ad infinitum!)

Question 9.3 Is a locomotive a fixed or variable aggregation? What about a train?

A locomotive is an example of a fixed aggregation because it is composed of a fixed set of components. A train
is a variable aggregation; it will consist of at least one locomotive and some (zero or more] wagons, but the
numbers of these may vary widely.

Partial aggregations

To say that objects are sometimes composed of other objects is clearly the case when
looking at concrete examples in the real world, but how does it relate to programming,
particularly when our objects are often much less concrete than hardware components

17 £

such as “whee!’, ‘engine’, ‘mouse’ etc?

The most common use of aggregation in object-oriented programming is a partial appli-
cation, whereby one class uses one or more objects of another class in order to represent
its internal state, but may well have other attributes which are not objects. In many cases
these are not the pure compositions of a parts explosion, where discrete physical compo-
nents create a larger object, but more abstract collections of objects and attributes which
together provide the implementation of a particular class. Often, the contained objects
are artifacts of the implementation, objects which are programming tools rather than
representations of real world entities. Booch calls this a “uses for implementation” rela-
tionship [Booch, 1994, p.180] which is to say that one class uses objects of other classes in
order to provide implementation details for its object methods.

Delegation

Rumbaugh [1991, p 284] makes the distinction between aggregation and ‘delegation’
whereby the use of objects as implementation components for other objects may involve
using only part of their interface. This means that an object which is used in an aggrega-
tion may not be fully utilised by the object that contains it, because only part of its behav-
iour might be appropriate in a particular context. This is particularly useful in situations
where we might otherwise consider using inheritance, but do not want to inherit all the

140

9 Associations and aggregations

behaviours of a class. We may want to implement some kind of business system
including account customers, and have an “AccountCustomer’ class already available.
However, it might contain methods which are inappropriate for our new application
because our new class is not truly ‘a kind of’ the existing class, but merely similar.
Perhaps the existing class allows a customer to have more than one account number, and
we might not want this feature in our system. If we inherit from the existing class then
we will have to inherit all the attributes and methods into our new class, including
behaviours which are inappropriate. Delegation gives us an alternative approach,
namely that we can delegate some of the behaviour of our new class to an object of the
existing class without inheriting from it. In this way we use the containment of the object
to mask any behaviours we do not wish to use. Our new customer class can contain an
object of the “AccountCustomer’ class and use those behaviours which are appropriate
to implement its own behaviours.

Question 9.4 In the last chapter, we said that ‘private derivation’ meant that an object of
a derived class could not directly use methods inherited from a base class,
but that its own methods could use these inherited methods to provide their
own implementation. What do you see as the difference between this and
‘delegation” which means that o class uses an object of another class to
implement some of its behaviours?2

In practice, using a class to implement another class's behaviour or using an object to.do the same thing are
different means to the same end. However, it is perhaps semantically preferable to use delegation, because
private derivation is using inheritance where in fact the derived class is probably not 'a kind of' the base class.
This may be the case when we are not using all of the base class's characteristics.

Examples of aggregation

As an example of aggregation of both real world components and implementation
constructs, we might wish to create a class to represent objects of a ‘superstore’ type, in
order perhaps to simulate waiting times for customers at the checkouts. We might model
the class using a collection of simple data types as attributes, but for a realistic applica-
tion this might be rather complex. It may be preferable to model certain components of
the store as objects, so that we might include ‘checkout’ objects, ‘customer queue’ objects
etc. In turn some of these objects may be aggregations of other objects — the ‘checkout’
may comprise a bar code reader, a till and a weighing scale for example.

We may also wish to use other objects as implementation details in order to create appro-
priate data structures. For example, we might create objects to contain randomly gener-
ated sets of groceries so that we can implement ‘customer’ objects. Whether these are
implemented as arrays, stacks, queues etc is not really important. Objects of any of these
classes might be instantiated to provide the required behaviour.

We have the flexibility to model some aspects of a class as other objects, and others as
simple attributes. A ‘Till’ object may contain for example another object of class
‘ChequePrinter’, but perhaps also a simple float attribute to maintain the current level of
cash it contains.

Not all aggregations are fixed over time, so that an object which acts as a component part
of another object may not always be present. For example, some checkouts may not have
a scale present at a particular time. However, to model the two possibilities as separate

141

9 Associations and aggregations

classes is problematic, because an object cannot change its class. Were we to have two
classes of ‘Checkout with Scale’ and ‘Checkout Without Scale’, objects created as
instances of one class could never belong to the other class. An aggregation is much
more flexible than this because it allows a particular checkout to either have a scale or
not at any time, and to change this state dynamically. Such variations in composition can
be dealt with in the implementation. In C++ we would use a pointer to an object rather
than an object itself, so that at any one time we may or may not be referencing a partic-
ular component.

Designing classes using aggregation

One of the ways in which aggregation can be useful is in writing classes which
contribute towards ‘open” object-oriented systems. We have stated before that one of the
prospective benefits of object technology is the creation of ‘software ICs’ [Cox, 1986,
p-26] - the software equivalent of reusable ‘plug in and go” electronic hardware compo-
nents. However, one of the practical problems which has frustrated this aim is the diffi-
culty of combining elements from different class libraries with their own classification
hierarchies. Inheritance in this context is a rather restrictive device, given the fixed
nature of the relationships between classes, and the problem is further compounded by
the wide range of potential application environments (operating systems, GUIs etc)
requiring hardware-specific implementations. How then can reuse be achieved beyond
the confines of one class library or one operating environment? It has been suggested
that a ‘layered” approach (similar to the ISO/OSI seven layer model for network soft-
ware) may help to achieve this end [Corbett, 1993 p.14]. This model can be represented
by an inverted pyramid (Fig. 9.9), each level of which represents a category of classes.
Objects at each level may be constructed from aggregations of objects at lower levels
(preferably the level immediately below). One aspect of this is that all the components
we use, however simple, are objects, which is a reflection of the Smalltalk philosophy in
which everything (even to the level of integers, strings etc) is an object.

APPLICATION LAYER

.
SEMANTIC BINDING LAYER e OBJECT
\ SERVICES
PRIMITIVE APPLICATION /&= N
LAYER w X
& \
PSRN \
SYSTEM INTERFACE /s N
LAYER - o\
- N
S e N
BUILT-IN ~._ ™| COLLECTION
DATA ~ CLASSES
TYPES/te o e e e e e = =

Fig 9.9: Corbett’s ‘application class framework’,
providing a model for layered aggregation.

142

9 Associations and aggregations

Each layer in the model contains classes at a particular level of detail. The layers
suggested by Corbett [1993, p 15] are:

1. Builtin data types

This is the level which needs to be encapsulated, since it is at the machine represen-
tation level that data types vary so much between platforms and operating systems.

2. System interface layer (wrapping types into classes).

The simple data types are encapsulated at this level as classes in order to be ‘open’.
The environment-specific representation of these standard data types is hidden
behind the interface of the objects. These might include such basic components as
strings, enumerated types, booleans, numbers and characters. A similar approach is
used in Java where the basic data types also have “‘wrapper’ classes to encapsulate
them. For example, as well as an “int’ data type there is an ‘Integer” class.

3. The primitive application layer (attributes).

Objects appropriate in scale to be attributes of classes may be modelled here. Model-
ling attributes as classes in their own right affords the opportunity to add methods to
them rather than the enclosing class having responsibility for all attribute behaviour.
Classes at this level might be of the scale of ‘name’, ‘address’, “account number’ etc,
composed of types defined in the system interface layer.

4. Semantic binding layer (classes).

At this level is the aggregation of “attribute’ objects into classes appfbpriate for appli-
cation sized objects. Objects such as ‘customer’, ‘account” and ‘bank’ would appear
at this level, composed of primitive application layer objects.

5. Application layer (programs).

At the highest level, we instantiate our large scale objects in the final application.

Question 9.5 How might aggregation assist in making object-oriented programs more
portable?
By making larger scale objects aggregations of smaller objects in place of simple data types, the higher level

classes should be able to be ported across hardware platforms without encountering problems of low level data
represenfation.

C++ syntax
There are two basic ways in which associations and aggregations are implemented
1. Objects contain objects
2. Objects contain pointers to objects

When writing fixed aggregations, we use the first approach of putting objects inside
objects. However, when more flexibility is required for variable aggregations, we use
embedded pointers. We also use pointers to implement simple associations.

Implementing fixed aggregations

To implement a fixed aggregation in C++, classes are defined with objects of other
classes inside them. To take an example of a real world object, we might define an
aircraft as being composed of a number of fundamental components (Fig. 9.10).

143

9 Associations and aggregations

= /]

A‘ [1©000006000000060[6600000000000000000[]

m [06660000000000aJ2000060500000050505[]

=\

Fig. 9.10: A real world aggregation — an aircraft assembled from discrete components.

The aircraft is at this level of analysis a fixed aggregation, because an aircraft object has a
fixed set of discrete components (another simple ‘parts explosion’). For large scale
assemblies, this is typical of the way in which manufacture is broken down between
manufacturing plants, possibly in different countries. The intention is, of course, that the
separately manufactured components are compatible with each other, allowing the
aggregation to function when they are all assembled. This is a useful analogy for the way
that software components should be ‘composable’ into larger systems via compatible
interfaces.

A simplified set of major components might be objects of classes PortWing, Starboard-
Wing, Engine, Fuselage and Tailplane. Assuming these classes have been defined else-
where, a class definition for ‘Aircraft’ might have a “private’ part as follows:

class Aircraft
é)rivate:
PortWing port_wing;
StarboardWing starboard_wing;
Engine engine1, engine2;
Fuselage fuselage;
Tailplane tailplane;
I/ ete...
b
Each of the composing objects would be members of classes defined elsewhere with their
own methods. An ’Aircraft’ object would be able to call on these methods in defining its
own behaviour. For example, an aircraft might have the method ‘turnToPort’, which
would need to alter the elevators and ailerons on both wings and turn the tailplane
rudder by calling on their methods (The component behaviours for this method are
based on a state table in [Coplien, 1992 p.368)):

void Aircraft :: turnToPort();

{
port_wing.elevatorUp();
starboard_wing.elevatorUp();
port_wing.aileronUp();
starboard_wing.aileronDown();

144

9 Associations and aggregations

tailplane.rudderLeft();
}
Activities of some composing objects will depend on the states of others. This is an
example of “propagation’, whereby the environment of the part is the same as that of the
assembly. In some cases, the behaviour of component objects is constrained by the state
of the aggregation. For example, the aircraft doors may well stay closed when the
engines are above idling speed, which we might code something like this (assuming a
constant called ‘IDLE"):

void Aircraft :: openDoors()
if(engine1.getSpeed() > IDLE Il engine2.getSpeed() > IDLE)

/! do not open doorsl!

}
else
{
fuselage.openDoors();
}

}

In this example, sending the message ‘openDoors’ to the aircraft will only invoke the
Fuselage ‘openDoors” method if the engines are not above idling speed. The state of the
aircraft therefore “propagates’ to the state of the doors.

Consiructing aggregations with parameiers

One aspect of instantiating objects that are aggregations is how to call parameterised
constructors of any contained objects. When an object is created, any contained objects
must be created at the same time, which implies that their constructors must be called. In
some cases, none of the composing objects have parameterised constructors, so their
instantiation is straightforward. However, if the constructors of contained objects take
parameters then we need a syntax that will allow them to be supplied via the constructor
of the aggregation. In the following example, a “Car’ object is instantiated containing
four ‘Wheel” objects and one ‘Engine” object. Since both the “Wheel” and “Engine’ classes
in this case require parameters to the constructor, the arguments are passed directly to
them via the constructor of the aggregation using the colon operator.

#include<iostream.h>
// definition of class 'Wheel'
class Wheel
{
private:
int diameter;
public:
Wheel(int diameter_in);
int getDiameter();
h
Wheel::Wheel(int diameter_in)
{

diameter = diameter_in;
int Wheel::getDiameter()
{

return diameter;

145

9 Associations and aggregations

146

// definition of class 'Engine' with 'cc' (cubic capacity) attribute
class Engine

{

private:
int cc;

public:
Engine(int cc_in);
int getCC();

b

Engine::Engine(int cc_in)
cc = cc_in;

}

int Engine::getCC()

{
return cc;

}

/I definition of class 'Car'; an aggregation of 4 wheels and an
// engine plus an additional attribute (passengers)
class Car
{
private:
Wheel nearside_front, offside_front, nearside_rear, offside_rear;
Engine engine;
int passengers;
public:
Car(int diameter_in, int cc_in, int passengers_in);
void showSelf();
B
// out of line constructor - note the use of the colon operator to allow aggregation
// parameters to be passed directly to the constructors of contained objects
Car::Car(int diameter_in, int cc_in, int passengers_in) :
nearside_front(diameter_in),
offside_front(diameter_in),
nearside_rear(diameter_in),
offside_rear(diameter_in),
engine(cc_in)

passengers = passengers_in;

// method to display attribute values
void Car::showSelf()
{
// any wheel will do here, since they are all the same size
cout << "Wheel sizes are all ! << nearside_front.getDiameter() << endi;
cout << "Engine capacity is " << engine.getCC() << endl;
cout << "Number of Passengers is " << passengers << endl;
}
void main()
{
// instantiate a car object
Car my_car(24, 500, 2);
// display its components
my_car.showSelf();

}

9 Associations and aggregations

Output from the program is:

Wheel sizes are all 24
Engine capacity is 500
Number of Passengers is 2

Implementing variable aggregations

In a variable aggregation a component part may not always be present at run time. We
can represent this possibility by using a pointer rather than an object inside the class.
Looking again at objects from the superstore example, this code fragment shows a
pointer of class ‘Scale” inside the class definition of ‘Checkout’ :

class Checkout
{
private:
Scale* the_scale;
// other components / atiributes etc.
public:
// scale methods
void addScale();
void removeScale()
/] ete...
b
This pointer could be instantiated to NULL in the ‘Checkout’ constructor, but then be
used to instantiate a dynamic object of class ‘Scale’ if required:
void Checkout::addScale()
{

}

Likewise, a scale could be removed...

the_scale = new Scale;

void Checkout::removeScale()
{
// destroy the object
delete the_scale;
// redirect the pointer to NULL
the_scale = NULL;
}
However, bearing in mind that some objects in an aggregation may have a lifetime inde-
pendent of the aggregation, it may not be appropriate to create and destroy the Scale
object. If it exists elsewhere, then it can simply be referenced by the Checkout class, by
passing a ‘Scale” pointer to the “addScale’ method:
void Checkout::addScale(Scale* scale)

{
}

In this case, removing the scale from the aggregation would simply mean directing the
pointer away from it without calling delete:

the_scale = scale;

void Checkout::removeScale()

{
}

the_scale = NULL;

147

9 Associations and aggregations

Which of these two strategies is appropriate depends entirely on whether the object in an
aggregation needs to have a separate existence outside it.

Implementing associations

There is much debate about how associations should be implemented in C++, particu-
larly because they can become very complex. However, these examples aim to show the
simplest possible implementations using basic syntax. More sophisticated solutions
using class libraries would be more likely in professional systems [Rumbaugh, 1996,
McCausland, 1996]. The association examples here will be modelled with a single
pointer (for a single association) or with an array of pointers (for a multiple association).

One fo one links in one direction

The simplest association to model would be a link in one direction between two objects,
so that one object can send messages to another. To demonstrate the syntax, we will
implement something resembling the light switch and bulb example, but in this case use
a button and a light object. The button will act as a toggle, so that each time it is pressed
the light changes state; turns on if it is off and off if it is on. In the ‘Button’ class, the asso-
ciation is modelled by providing a pointer to a ‘Light’ object as an attribute. To simplify
making classes visible to each other, all the code is in a single file:

#include <iostream.h>
// these constants make the code a little more readable
const int OFF = 0;
const int ON = 1;
// the Light class has no knowledge of the Button class. objects of this
// class are what Booch terms 'Agents' (they do not act upon other objects,
// but are acted upon by other objects)
class Light
{
private:
int light_state;
pubilic:
Light();
void changeState();
void showState();
h
Lighi::Light()
{

light_state = OFF;

}
void Light::changeState()

{
if(light_state == OFF)
light_state = ON;
}
else
{
light_state = OFF;
}
}
void Light::showState()
{

if(light_state == OFF)

148

9 Associations and aggregations

{

cout << "light is off" << endl;
}
else
{

cout << "light is on" << endl;
}

}

// the button class is an 'Actor'; it acts upon a Light object. the
// association is implemented with a pointer
class Button
{
private:
Light* light_bulb;
public:
Button(Light* bulb);
void press();
b
/I the constructor makes the link between the associated objects
Button::Button(Light* bulb)

light_bulb = bulb;
}
// the press method sends a message to the associated object
void Button::press()

{
light_bulb -> changeState();
}
void main()
{

// instantiate a light, then use it as a parameter to the constructor
// of the Button object
Light* Big_Light = new Light;
Button Light_Button(Big_Light);
// this little menu driven program sends messages to the Button object
/it, in turn, sends messages to the Light object
int choice = 0;
while(choice != 2)

// show if the light is on or off
Big_Light -> showState();
cout << "Enter 1 to press light button, 2 to quit ";
cin >> choice;

/ pressing the button changes the state of the light
if(choice == 1)

Light_Button.press();
}
}

cout << "End of program" << endl;

}

A brief interactive run:

light is off
Enter 1 to press light button, 2 to quit 1
light is on
Enter 1 to press light button, 2 to quit 1

149

9 Associations and aggregations

light is off
Enter 1 to press light button, 2 to quit 2
End of program

One to one link in two directions

An example of a one to one association which has a bidirectional link, in this case
between objects of the same class, might be two ‘Person’ objects who marry. As indicated
carlier, this is a relationship where, unlike the light bulb and switch relationship,
messages pass in both directions. In order to model this relationship, both classes must
include a reference (via a pointer) to the linked object. Because both objects are members
of the same class, they both communicate through their “partner” pointers. In this case,
each object can send and receive messages, but a level of complexity is introduced
because we must ensure that both ends of the link are updated together. It is no use one
partner getting divorced if the other partner does not know about it!

/*

MARRIAGE.H demonstrates a link between objects of the same class. This would
appear on a design as an association from a class to itself. Note
that in this example all modifications to the link (i.e. 'marry' and
'divorce’) must be applied to both objects at the same time.

*/

#include <iostream.h>
#include <string.h>
// a Person has a name and an association with 0 or 1 partners, also
// an object of the Person class
class Person
{
private:
char name[40];
Person* partner;
public:
Person(char* name_in);
char* getName();
void marry(Person* spouse);
void divorce();
void showPartner();
b :
// the constructor sets the name from a parameter, and initialises
// the person as single (i.e. no link to another persen object)
Person::Person(char* name_in)

{
strncpy(name, hame_in, 39);
name[39] = \0';
partner = NULL;

}

// getName returns the name
char* Person::getName()

{
}

// 'marry' makes the link with another Person object
void Person::marry(Person* spouse)

{
}

return name;

partner = spouse;

150

9 Associations and aggregations

// 'divorce' removes the link by resetting the pointer to NULL
void Person::divorce()

{
}

// if the person has a partner, their name is displayed
void Person::showPartner()

partner = NULL;

{
if(partner != NULL)
{
cout << name << " is married to " << partner -> getName() << endl;

}

else

{

cout << name << " is single" << endl;
}
}
/*

MARRIAGE.CPP example program that makes and removes a link
between two 'Person’ objects. Because this class
does not automatically update the association at
both ends, messages such as 'marry' and 'divorce'
must be sent to both objects.

*/

#include "marriage.h"
void main()

{

/l instantiate two 'Person' objects
Person* fred = new Person("Fred");
Person* wilma = new Person("Wilma");
// display their partners; they will have defaulted to being single
fred -> showPartner();
wilma -> showPartner();
/I will you take this pointer to be your lawful wedded object?
fred -> marry(wilma);
wilma -> marry(fred);
H 1 will...
cout << "But after the ceremony..." << endl;
fred -> showPartner();
wilma -> showPartner();
// then after the honeymoon is over...
fred -> divorce();
wilma -> divorce();
cout << "Then again, some time later..." << endl;
fred -> showPartner();
wilma -> showPartner();

}

A test run shows how the links change when updated specifically at both ends for the
shortest marriage in history:

Fred is single

Wilma is single

But after the ceremony...
Fred is married to Wilma
Wilma is married to Fred

151

9 Associations and aggregations

Then again, some time later...
Fred is single
Wilma is single

Automatically updating associations with the 'this' pointer

The example above shows that associations can be implemented as links in both direc-
tions, but the implementation is rather lacking. It leaves the user of the class responsible
for updating both ends of the association. It may be preferable to code a mechanism that
automatically updates the other end of a link when we create it in a given object. In
general terms, if we have a method that forges a link with another object, then it should
also make that link in the other direction by passing itself to a similar method of the
other object. How, then, can an object pass itself to another object? In C++ this can be
done with a pointer called ‘this” which all objects have as part of their structure. All
objects can refer to themselves with the ‘this’ pointer, as the following example program
shows. Here, we have two different classes, ‘Office’ and ‘Secretary’, with a one to one
association between them. In the implementation, making a link between an office and a
secretary automatically makes the link in the other direction, from the secretary to the
office. Unlike the ‘Light’ program, the classes appear in separate files. Note how the

‘forward declarations’ of classes are needed to allow the different files to compile:
/*
OFFICE.H Class definition for the 'Office’ class
*/
// because the class needs to be aware that the Secretary class
// exists, this forward declaration allows the code to compile
class Secretary;
class Office
{
private:
int room_number;
Secretary* secretary;
public:
Office(int number);
int getRoomNumber();
Secretary* getSecretary();
void addSecretary(Secretary* sec);

SECRETRY.H Definition of the 'Secretary’ class
*/
// because class 'Secretary' needs to be aware of class 'Office’
// we declare its name here as a 'forward declaration’
class Office;
class Secretary
{
private:

char role[80];

Office* office;
public:

Secretary(char* role_in);

char* getRole();

void addOffice(Office* room);

Office* getOffice();
b

152

9 Associations and aggregations

The method definitions for the two classes are:

/*
OFFICE.CPP Method definitions for the 'Office’ class
*/
#include "office.h"
// because the ‘addSecretary' method uses the 'addOffice' method of the
// Secretary class, the forward declaration in the header file is not
// enough. we also need to include the full class definition:
#include "secretry.h"
/ the constructor sets the room number
Office::Office(int number)

{
}

/I selector methods to retum office number and secretary
int Office::getRoomNumber()

room_number = number;

{
return room_number;
}
Secretary* Office::getSecretary()
{
return secretary;
}

// implement the association; add a secretary

void Office::addSecretary(Secretary* sec)

{

/I direct the association pointer to the secretary
secretary = sec;

// pass 'this' object back to the secretary
secretary -> addOffice(this);

}

/*
SECRETRY.CPP method definitions for the ‘Secretary’ class

*/

#include "secretry.h"

#include <string.h>

// the constructor sets the secretary's role

Secretary::Secretary(char* role_in)

{
}

// selector methods to return the role and office
char* Secretary::getRole()

strepy(role, role_in);

{
return role;
}
Office* Secretary::getOffice()
{
return office;
}

/l implement the association; direct the pointer to an office
void Secretary::addOffice(Office* room)

{
}

office = room;

153

9 Associations and aggregations

This short test program simply creates objects of both classes and demonstrates that the
association automatically updates at both ends:
/*
OFFICEMN.CPP Program to demonstrate the automatic
updating of both ends of an association
*/
#include "office.h"
#include "secretry.h"
#include <iostream.h>
void main()

{

// instantiate an 'Office’ object
Office* faculty_office = new Office(101);

// instantiate a 'Secretary' object
Secretary* secretary = new Secretary("faculty secretary");

// add the secretary to the office. the secretary will automatically

// have the office assigned to him/her
faculty_office -> addSecretary(secretary);

// display the links from both ends of the association
cout << "The " << secretary -> getRole() << " is in room ";
cout << secretary -> getOffice() -> getRoomNumber() << endl;
cout << "Room number " << faculty_office -> getRoomNumber() << " houses the ";
cout << faculty_office -> getSecretary() -> getRole() << endl;

}
The output from the program is:

The faculty secretary is in room 101
Room number 101 houses the faculty secretary

The example demonstrates how an association can be automatically updated, but only
works in a single direction (i.e. adding a secretary to an office). The reverse association is
not automatic; adding an office to a secretary does not add that secretary to the office.
This requires a rather more complex piece of code that will not be investigated here (but
you might like to think about it!).

Multiple associations

To implement multiple associations, we should ideally use appropriate classes from a
library [Rumbaugh, 1996], but we can also use simple arrays to demonstrate the prin-
ciple. In previous exercises and examples we have seen arrays of bank accounts, vehicles
and employees, but all declared in ‘main’. In this example, we model the relationship
between a bus company and its buses by encapsulating an array of pointers of class ‘Bus’
in a class called ‘BusCompany’. In this example, the link is implemented in one direction
only, so buses do not have a link to the company (but see the exercises at the end of the
chapter!).

J

BUS.H header file for the 'Bus' class
*
class Bus

{

private:
char registration[10};
int year_of _manufacture;
char bus_type;

154

9 Associations and aggregations

public:
Bus(char* reg, int year, char type);
char* getRegistration();
char getBusType();
int getYearOfManufacture();
b
/*
BUS.CPP Method implementations for the 'Bus' class
*/
#include <string.h>
#include <iostream.h>
#include "bus.h"
// the constructor sets the attributes from the parameter list
Bus::Bus(char* reg, int year, char type)

{
strncpy(registration, reg, 9);
registration[9] = \0';
year_of_manufacture = year;
bus_type = type;

}

// selector methods
char* Bus::getRegistration()

{
return registration;
}
int Bus::getYearOfManufacture()
{
return year_of_manufacture;
}
char Bus::getBusType()
{
return bus_type;
}
/*
BUSCO.H header file for the 'BusCompany' class
*/

// the header file for the Bus class is needed because the BusCompany
// refers to it
#include "bus.h"
class BusCompany
{
private:
/I an array of 'Bus' pointers to implement the association
// between '‘BusCompany' and 'Bus'

Bus* buses[30];

char company_name[30];

int number_of_buses;
public:

BusCompany(char* name);

char* getCompanyName();

int getNumberOfBuses();

int addBus(Bus*);

- int removeBus(char* search_reg);

void showFleet();
b
/*

BUSCO.CPP Method implementations for 'BusCompany' class
*/

155

9 Associations and aggregations

156

#include <string.h> // for 'strncpy' and 'stremp’
#include <iostream.h>
#include "busco.h"
// constructor
BusCompany::BusCompany(char* name)
{
strncpy(company_name, name, 29);
company_name[29] = \0";
// initialise the pointers in the array to NULL
for(inti = 0; i < 305 i++)
{

buses[i] = NULL;

// start with no buses
number_of_buses = 0;
}
// selector methods
char* BusCompany::getCompanyName()

{

}
int BusCompany::getNumberOfiBuses()

{
}

// modifiers

int BusCompany::addBus(Bus* nhew_bus)

{

/1 look for an empty slot in the array to add the bus into
for(int i = 0; i < 30 && buses]i] != NULL; i++)
{

// it an empty slot was found, add the bus and return 1 (true)
if(i < 30)

return company_name;

return number_of_buses;

busesli] = new_bus;
number_of_buses++;
return 1;
}
/] otherwise, return O (false)
else

{
}

return 0;

// this method removes a bus from the fleet if it matches the
/f registration number entered at the keyboard. the method returns
/1 1 if a match was found, 0 if not. because the conditional
// statements are more deeply nested than in the addBus method,
// a flag is set rather than directly returning 1 or 0
int BusCompany::removeBus(char* search_reg)
{
// the flag is set to a default of O (false)
int found = 0;
// iterate through the array, checking each pointer which is referencing
// a 'Bus' object (i.e. not pointing to NULL)
for(inti = 0; i < 30; i++)

if(buses]i] != NULL)

9 Associations and aggregations

{

// the 'stremp' function (included in string.h) returns O if the strings are the same
if(stremp(buses]i] -> getRegistration(), search_reg) == 0)
{
buses][i] = NULL;
number_of buses--;
// set the 'found' flag to 1 (true)
found =1;
}
}

// the value of 'found' will be zero unless 'strcmp’ has successfully
// matched the registration number
return found;
}
// the 'showFleet' method displays the details of the buses referenced by the
/I pointer in the array
void BusCompany::showFleet()
{
/I display the company name
cout << endl << "Current fleet list for " << company_name << " bus company” << endl;
// iterate through the array looking for buses
for(int i = 0; i < 30; i-++)

/it a bus is present, display its details
if(buses]i] != NULL)

cout << "Bus registration: " << busesJi] -> getRegistration();
cout << ", manufactured in " << buses[i] ~> getYearOfManufacture();
if(buses|i] -> getBusType() == 's')

{
cout << ", a single decker" << endl;
}
else
{
cout << ", a double decker" << endl;
}
}
}
}
/*
BUSMAIN.CPP Program to test the associated objects
Bus and BusCompany
*/

// only the BUSCQO.H header file is needed because it already includes BUS.H
#include "busco.h"
#include <iostream.h>
void main()
{
// create some buses. since they will have a life independent of the bus
/l company (they may have been previously owned and may be sold on the others)
// the company does not control their lifetimes
Bus* bus1 = new Bus("P223TYU", 1996, 's');
Bus* bus2 = new Bus("L989HHG", 1993, 'd');
Bus* bus3 = new Bus("M543BVC", 1994, 's");
// create a bus company
BusCompany bus_company("OceaniaBus");
// add two buses. In this example we are ignoring the return value of the method,

157

9 Associations and aggregations

// but it will return 0 if there is no room to add a bus
bus_company.addBus(bus3);
bus_company.addBus(bus1);

// show the current fleet
cout << "Two buses have been added to the fleet" << endl;
bus_company.showFleet();

// remove one bus, getting the search registration from the keyboard
char search_reg[10];
cout << "Enter the registration number of the bus to be removed ";
cin >> search_reg;
if(bus_company.removeBus(search_reg) == 1)

{
cout << "Bus " << search_reg << " removed" << endl;
}
else
{

cout << "Bus " << search_reg << " not found" << endl;

// add another bus
bus_company.addBus(bus2);

/I show the modified fleet
cout << "A new bus has been added to the fleet" << endl;;
bus_company.showFleet();

// display the number of buses in the fleet
cout << "The " << bus_company.getCompanyName() << " bus company has *;
cout << bus_company.getNumberOfBuses() << " buses in its fleet" <<'endl;

}

The output from this (not very interactive) test program is:

Two buses have been added to the fleet

Current fleet list for OceaniaBus bus company

Bus registration: 115438V C, manufactured in 1994, a single decker
Bus registration: P223TYU, manufactured in 1996, a single decker
Enter the registration number of the bus to be removed M543BVC
Bus M543BVC removed

A new bus has been added to the fleet

Current fleet list for OceaniaBus bus company

Bus registration: L989HHG, manufactured in 1993, a double decker
Bus registration: P223TYU, manufactured in 1996, a single decker
The OceaniaBus bus company has 2 buses in its fleet

Summary of key points from this chapter

1. A classification hierarchy shows the inheritance relationships between classes. In
contrast, a composition hierarchy shows the containment relationships between
objects. Associations allow objects to send messages to one another.

2. A composition hierarchy describes an aggregation of objects which together are
component parts of another object.

3. Some forms of aggregation are fixed, constant relationships, whilst others are
containers for unpredictable sets of objects. Between these two extremes there may
be many combinations of aggregate classes.

158

9 Associations and aggregations

4. Some aggregations are like ‘exploded parts” diagrams — the object is an assembly of a
clear set of discrete components.

5. Aggregation involves levels of abstraction, though in a different way to inheritance.

Aggregations have certain properties (transitivity, antisymmetry and propagation)
and may be of various types (fixed, variable or recursive).

7. Delegation is the use of contained objects to provide some of the behaviours of
another class. It is a more flexible approach than inheritance if the new class is not
truly “a kind of” the other class.

8. Aggregation is a flexible approach to associations between objects which are not
inheritance. It does not preclude the possibility of objects changing their roles in an
aggregation at run time.

9. A ‘layered model’ approach to aggregation may assist in creating ‘open’ class
libraries, portable between systems.

10. In C++, classes may contain declarations of objects or pointers to objects which may
be dynamically referenced. Either or both of these may be used in a single class as
appropriate to model associations or aggregations.

#

Exercises
Aggregation

Here are two class definitions for ‘Wheel” and ‘Bike’. The ‘Bike’ class is 51mp1y an aggre-
gation of “Wheels'.

class Wheel

{

private:
int size;

public:
Wheel(int wheel_size) { size = wheel_size; }
int getSize() { return size; }

class Bike

{
private:
Wheel front_wheel, back_wheel;
public:
Bike(int wheel_size);
int getFrontWheelSize() { return front_wheel.getSize(); }
int getBackWheelSize() {return back_wheel.getSize(); }
H
Bike::Bike(int wheel_size) : front_wheel(wheel_size), back_wheel(wheel_size)

{3
Create an instance of class ‘Bike” and test its methods.
2. Adda‘Rider’ class with one attribute (name of rider), a parameterised constructor to
set this name when an instance of the class is created, and a method to return the
rider’s name.

3. Include an object of class ‘Rider” in your ‘Bike’ class, and modify the ‘Bike” methods
as appropriate so that a bike is able to return the name of its rider. Test these modifi-
cations in ‘main’.

159

9 Associations and aggregations

3

4.

Replace the ‘Rider” object with a pointer, so that a bike may or may not have a rider
at a particular time. Add ‘Bike’ methods to add and remove the rider, ensuring that
the pointer is referencing NULL when a rider is not present. Add a destructor to
ensure that any ‘Rider’ object being referenced when a bike is destroyed is also
deleted. Test these modifications in ‘main’.

Association

1.

160

Create classes called “Telephone’ and ‘Desk’ that have a one to one association.
Implement and demonstrate methods to find out the telephone number for a
particular desk (e.g. "help desk’, ‘reception desk’ etc), and the name of the desk that
has a given telephone number. You do not have to make the associations automatic
in this exercise.

Modify the ‘Bus’ class so that a bus implements a link with its bus company. Modify
the ‘addBus’ method of the ‘BusCompany’ class so that it updates the association in
both directions (so that the link between the bus and the company is automatically
made). Replace the example ‘main’ function with a more interactive program.

An example program

In the preceding chapters we have seen how to create classes and to test their methods
using simple ‘main’ functions, but we have not seen numbers of objects of different
classes combining together to create a program of any scale. Now that we have covered
the fundamental concepts of encapsulation, inheritance, association and aggregation, we
can begin to create something like an object-oriented program. This example is based on
a simplified hotel rooming system which uses a number of objects of different classes.

Some object-oriented programs involve a number of objects with devolved responsibili-
ties, collaborating with each other and sharing control. Many other applications
however tend to have one “controller” object which manages the system. This is one such
example, where the ‘Hotel’ object manages all the objects within it in what Booch would
call a ‘using’ relationship — the hotel uses objects of the other classes to implement the
system behaviour. Although it is not “fully object-oriented’ (it does not use polymor-
phism for example, since we have not yet covered it) it should give a flavour of object-
oriented programming,.

System description

The Solent Hotel has 5 function rooms (numbered 1-5) and 40 bedrooms (6-45).
Bedrooms 6-15 are single, and bedrooms 16-45 double. When customers arrive at the
hotel, they are booked into the first available room of the required type. Their name is
recorded, along with the payee (i.e. who is paying for the room.) This is recorded as
‘PRIVATE' if the customer is the payee, or the name of a company or organisation may
be entered. The tariffs are £40 for a single bedroom, £55 for a double bedroom and £200
for a function room. There is one set of presentation equipment in the hotel which may
be moved between function rooms.

The system enables customers to be booked into any available room, and ensures that a
room is made available for further bookings as soon as it is vacated. It also allows the
presentation equipment to be moved between rooms.

The system as implemented does not deal with dates, so that bookings, equipment
movements and rooms becoming available are purely run time events.

The system produces the following reports on screen:

1. How many rooms (of all types) are currently occupied.

The room numbers of bedrooms currently occupied, and the details of the residents.
The room numbers of function rooms currently occupied.

Which function room currently contains the presentation equipment.

onR W

What the day’s income will be given the state of room occupancy at a specific time.

The class diagram

The UML class diagram shows the classes in the system, their attributes and methods. It
also shows the inheritance, association and aggregation relationships between the
various objects, and ‘multiplicity’ (i.e. how many objects are involved in certain
relationships). The notation for multiplicity was seen in Chapter 9 (Fig. 9.1). The
program comprises objects of classes ‘Hotel’, ‘Customer’, ‘PresentationEquipment’,

161

An example program

Room

room count
room number
room status

‘Bedroom’ and ‘FunctionRoom’. ‘Bedroom” and ‘FunctionRoom’ are derived classes of a
base class ‘Room’. 'Hotel’ is composed of ‘Bedrooms’ and ‘Function Rooms’.
‘PresentationEquipment” is aggregated inside ‘FunctionRoom’ and ‘Customer’ has an
association with ‘Room’. Class attributes and methods are underlined.

Customer

< Books 0.1

get customer name
get customer payee
get room number
is occupied
occupy room

customer count

name
payee

get customer count
get name
get payee

vacate

I

Function Room

double tariff
number of beds

equipment
function tariff

4 isin

get double tariff
get number of beds

get single tariff

get function tariff
has equipment

install equipment
remove equipment

|5

4

0..1

Hotel

o]

Presentation Equipment

bedroom report

book room

count occupied rooms
function room report
locate equipment
manage rooms

move equipment
show income

vacate room

Fig. Ex.1: UML class diagram showing the classes, associations,

attributes and methods in the ‘Hotel” program.

One thing which does not appear on an object-oriented design is the ‘main” function,
since it is not an object. While it is not inherently ‘wrong’ to use main in an object-
oriented program, it is perhaps better to try to devolve all responsibilities to objects,
leaving main to simply start the ball rolling and instantiate the first object. This is what
happens here — main is used to instantiate an object of the ‘Hotel” class, which from its
constructor calls its own methods and the methods of other contained objects.

An example program

Calling methods from within methods

For objects to ‘pass messages’ to each other, they must be able to call each others’
methods, and sometimes also call their own methods. Within the methods of a class, we
may call other methods of the same class as if they were normal function calls - that is to
say they do not need to be preceded with an object name. In the example, we can see that
the Hotel has a method called ‘manageRooms” which controls the overall process. This
calls a number of other methods of the Hotel class directly. Methods of other objects may
be called from within methods as we have already seen them called from main — by
preceding the method name with the name of the object (or pointer for a dynamic
object). The only proviso is that the object receiving the message must be visible (in
scope) when the method is called. In the case of the hotel, all the objects are aggregated
within the hotel or other objects which themselves are in the hotel (customers are in
rooms which are in turn in the hotel for example), so they are visible to all methods of the
hotel, either directly or via some other object.

There are two new aspects of syntax which are introduced in this example. In Chapter 3,
we looked at the storage of strings in arrays, but indicated that strings could also be
stored using dynamic memory. The syntax for doing this, and also for declaring
‘enumerated types,’ is outlined below.

Strings using dynamic arrays

In Chapter 3 we discussed the ways in which strings may be represented in C-++, using
both arrays and pointers of type char. A strategy for strings was suggested which
involved storing strings in arrays and manipulating them (for example to pass them to
and from functions) using pointers. The problem with arrays of course is that they have
to be of an appropriate size, but in many cases we will not know the size of a string until
run time. Therefore we generally find ourselves erring on the side of caution and
declaring large arrays just in case we need them, when in fact in many cases this is just
memory going to waste. A more efficient and flexible way of handling strings is to
dynamically allocate an array at run time which is just big enough to hold a particular
string and no longer. This can be done using the ‘new’ operator in a similar way to the
dynamic instantiation of an object. This statement dynamically allocates an array of 10
chars for example:

/! declare a pointer of type char

char* string;

/I dynamically allocate an array

string = new char[10];
Of course this is only useful if we can size the array not with a literal number but with
the size of a given string at run time. To find out the size of a string, we can use a stan-
dard C function called ‘strlen” which is defined in “string.h’. The syntax is:

size = strlen(char*)

‘strlen’ returns the size of a string in characters, so we can use it to find out the size of a
particular string and then dynamically allocate an array of that size, plus one extra char-
acter for the terminating “\0’. Then we can copy the original string into the array. In this
example, we will assume that an object attribute (‘customer_name’) has been declared as
a char pointer. In a method of the class, the original string is entered at the keyboard using
‘cin’ into a large array. This is only a temporary variable declared within the scope of the

163

An example program

method so its size is not going to cause a problem. Then the size of the string is used to
dynamically allocate the attribute, and the string is copied to it from the temporary array:

// attribute declared in the class definition
char* customer_name;

// in an object method, a temporary array is declared

char buffer[80];
cin >> buffer;
// ‘strlen’ is used to get the size of the string entered at
// the keyboard
int string_size = strlen(buffer);
// an array of the appropriate size is instantiated (string
// length + 1) and the string is copied into it
customer_name = new char[string_size + 1};
strcpy(customer_name, buffer);

In the example program, a similar process is used for the attributes of “Customer’

Because the array is dynamically allocated, it must also be explicitly destroyed using
‘delete’ before falling out of scope (probably in the object destructor). When deleting
dynamically allocated arrays, a special version of “delete” is used:

delete [] customer_name;

Enumerated fypes

We often find attributes that only have a fixed set of possible values. A switch for
example might only have two possible states, on or off. However, we cannot easily repre-
sent such attributes using the simple data types. We might represent a switch in a class
using an integer, and use a value of 0 to represent ‘off” and 1 to represent ‘on’, but of
course this does not stop the integer from containing other undesirable values, and does
not make the code very clear. Consider these two methods of a ‘Switch’ class:

void Switch::turnOn()
{

switch_state = 1;

}
void Switch::turnOff()
{

}

The 1 and the 0 have a fairly arbitrary relationship with the attribute. We could make it
more readable by using constants as follows:

switch_state = 0;

const int ON = 1;
const int OFF = 0;

This will make the methods a little more readable but we are still using an integer to
represent the attribute.

A better way to represent such values is the ‘enumerated type’. This is a data type
(declared by the keyword ‘enum’) which allows us to provide a given set of possible
values for an attribute which relates to integer values but each value can be given a
descriptive name. This is an enumerated type definition for a ‘switcher”:

enum switcher {off, on};

164

An example program

The definition of an enumerated type usually appears outside the scope of any class or
function.

By default, the states defined in the braces correspond to numbers starting at 0 and incre-
menting by 1 each time, so that in this case off = 0 and on = 1. We may, if we wish, supply
other values, for example to start at 1:

enum medal {gold = 1, silver = 2, bronze = 3};
Instances of an enumerated type can be declared in a program. This instantiates a
switcher called ‘switch_state’

switcher switch_state;

With “switch_state” as an attribute of the ‘Switch’ class, our previous methods might be
defined as:

void Switch::turnOn()
{

swiich_state = on;

}
void Switch::turnOff()
{

}

Because it is a data type, an enumerated type can also be used as the return type of a
function or used as a parameter. :

switch_state = off;

Enumerated types are used to represent two attributes in the hotel program. In addition,
an enumerated type is used to simulate the ANSI standard ‘bool” type in the "hotel.cpp’
file. This is declared as:

enum bool {false, true};

If you have an ANSI standard compiler, then this can be removed from the source code.

The source code

In the preceding chapters we have seen how larger programs are generally decomposed
into a number of separate files to make the code more manageable and reduce compila-
tion times. This program consists of nine different files, shown in Fig. Ex2. The arrows
indicate 'compilation dependencies’ where headers need to be included in order for files
to successfully compile.

customerh | < fm—— room.h R & hotel.h
customer.cpp room.cpp bedroom.cpp | |funcroom.cpp hotel.cpp hotlmain.cpp

Fig, Ex2: The files in the Hotel program and their compilation dependencies.

Here, then, is the example program source code. Its interface, being portable, is very
crude, but this could easily be remedied by adding the various screen handling functions
(clear screen, colours, text windows etc.) that are available with most compilers. Since
these are not standard, there is no point in trying to include them here.

165

An example program

166

/*
CUSTOMER.H header file for the 'Customer’ class
The 'Customer' class has a class attribute to count customer objects
and two object attributes (dynamically allocated strings) passed
to the constructor.
*f
class Customer
{
static int customer_count;
char* name;
char* payee;
public:

// parameterised constructor
Customer(char* customer_name, char* payee_name);
// destructor
~Customer();
/1 selector methods
char* getName();
char* getPayee();
/I class selector method
static int getCustomerCount();

b
/*

CUSTOMER.CPP definitions of ‘Customer’ class methods
*/
#include "customer.h"
#include <string.h>
// reserve storage for the class attribute
int Customer::customer_count;
// the constructor gets the details from the keyboard
Customer::Customer(char* customer_name, char* payee_name)
{
// the name and the payee are dynamically allocated using the
/I 'new' operator. The 'strlen' function is used to find their size,
// before a dynamic arrays are created and the strings copied to them
int string_size;
/ find size of customer name
string_size = strlen(customer_name);
// allocate the necessary size of dynamic array (add an extra character for the \0')
name = new char|string_size + 1];
// copy the name into the attribute
strecpy(name, customer_name);
// allocate and copy the payee name using a similar process
string_size = strlen(payee_name);
payee = new char[string_size + 1];
strepy(payee, payee_name);
// add to the customer count
customer_count++;
}
// the destructor decrements the customer count and frees the memory
/I occupied by the name and payee strings
Customer::~Customer()

{
customer_count--;
delete[] name;
delete[] payee;

}

An example program

// simple selector methods
char* Customer::getName()

{

return name;

char* Customer::getPayee()

{

return payee;

}

// class (static) selector method
int Customer::getCustomerCount()

{

return customer_count;

}
/*

ROOM.H Header file for 'Room’ class
*/
/l we include the 'Customer' class header here so that the Room class
// can declare a pointer of that class as a member
#include "customer.h"
// 'PresentationEquipment’ has no definition, but objects can be instantiated,
// even though there are no methods to call
class PresentationEquipment
HE
/I an enumerated type is defined to represent room occupancy. a room will
/I be either vacant or occupied
enum status {vacant, occupied};
// 'Room' is an abstract base class. It contains a pointer of class ‘Customer’
// to model the association between the two classes. the link is in one direction only
class Room
{
protected:
status room_status;
static int room_count;
int room_number;
Customer* customer;
public:
// constructor
Room();
// modifier methods
void occupyRoom(char* customer_name, char* payee_name);
void vacate();
/I selector methods
int getRoomNumber();
char* getCustomerName();
char* getCustomerPayee();
status isOccupied();
b
// Bedroom is a derived class of '‘Room'
class Bedroom : public Room
{
private:
static float single_tariff;
static float double_tariff;
int number_of_beds;
public:
// constructor

167

An example program

Bedroom();
/1 selector method
int getNumberQfBeds();
/I class selector methods
static float getSingleTariff();
static float getDoubleTariff();
b
/l another enumerated type is defined to record the presence or
/] absence of the presentation equipment
enum present_status {absent, present};
/I 'FunctionRoom' is derived from 'Room'
class FunctionRoom: public Room
{
private:
present_status equipment;
PresentationEquipment* presentation_equipment;
static float function_tariff;
public:
/I constructor
FunctionRoom();
// modifier methods
void installPresentationEquipment(PresentationEquipment*);
void removePresentationEquipment();
// selector methods
static float getFunctionTariff();
present_status hasEquipment();

b

/*

ROOM.CPP Method definitions for the 'Room’ class
*/
#include "room.h"
#include <stdlib.h> // for NULL
/Il reserve memory for the class attribute ‘room_count’
int Room::room_count;
// the constructor generates the room number from the static counter,
// initialises the 'Customer' pointer to NULL and sets the status
// to vacant
Room::Room()

{
room_count++;
room_number = room_count;
customer = NULL;
room_status = vacant;

}

// when a room is occupied, a '‘Customer' object is dynamically instantiated,
// passing the name and payee parameters form this method to the constructor.
// the room status is set to occupied
void Room::occupyRoom(char* customer_name, char* payee_name)
{
customer = new Customer(customer_name, payee_name);
room_status = occupied;
}
// when a room is vacated, the object is destroyed, and the pointer returned to NULL
void Room::vacate()
{
delete customer;
customer = NULL;

168

An example program

room_status = vacant;
}
/Il simple selector methods
int Room::getRoomNumber()

{
}

// these methads return data via another method of the contained object
char* Room::getCustomerName()

return room_number;

{

return customer -> getName();
}
char* Room::getCustomerPayee()
{

return customer -> getPayee();

// this method uses the enumerated type as its return value
status Room::isOccupied()

{
}

return room_status;

/*
BEDROOM.CPP Method definitions for the 'Bedroom' class
*/
#tinclude "room.h"
/l reserve memory for the tariffs
float Bedroom::single_tariff = 40.00;
float Bedroom::double_tariff = 55.00;
// the constructor initialises the number of beds according to the room number
Bedroom::Bedroom()

{
if(room_count > 5 && room_count < 15)
{
number_of_beds = 1;
}
else
{
number_of_beds = 2;
}
}

// object selector method
int Bedroom::getNumberOfBeds()

{
}

// class (static) selector methods
float Bedroom::getSingleTarifi()

return number_of_beds;

{ return single_tariff;

iloat Bedroom::getDoubleTariff()
{ return double_tariff;

}

/x

FUNCROOM.CPP Method definitions for the 'FunctionRoom' class

169

An example program

170

*/
#include "room.h"
#include <stdlib.h> // for NULL
// reserve memory for the tariff class attribute
float FunctionRoom::function_tariff = 200.00;
// the constructor initialises the room as empty of equipment
FunctionRoom::FunctionRoom()
{
presentation_equipment = NULL;
equipment = absent;

// this method directs the internal pointer to the address of an object
/l passed as a parameter
void FunctionRoom :: installPresentationEquipment(PresentationEquipment* pointer)
{ .
presentation_equipment = pointer;
equipment = present;
}
// since the lecture equipment is moved but still exists, the object
/I is not deleted - the pointer is simply redirected
void FunctionRoom :: removePresentationEquipment()
{
presentation_equipment = NULL;
equipment = absent;
}
/I selector methods
float FunctionRoom::getFunctionTariff()

{
return function_tariff;
}
present_status FunctionRoom::hasEquipment()
{
return equipment;
}
/*
HOTEL.H declaration of the 'Hotel' class
*/

#include "room.h"
// the 'Hotel' class is an aggregation of rooms of the two types,
// and also contains an object of the 'PresentationEquipment’ class.
// it acts as the interface object to the system, via its 'manageRooms'
// method. all input and output resides in the 'Hotel' class, which means
// that the interface could be easily changed without the underlying classes
/I being affected
class Hotel
{
private:
// the hotel is a 'composition' aggregation of 5 function rooms and 40 bedrooms
FunctionRoom function_room[5];
Bedroom bedroom[40];
// it also aggregates a set of presentation equipment, though this is not
/I as fixed as a composition relationship
PresentationEquipment lecture_set;
public: -
/I constructor
Hotel();
/I modifier methods

An example program

void manageRooms();
void bookRoomy();
void vacateRoom();
void moveEquipment();
// selector methods
void locateEquipment();
void countOccupiedRooms();
void bedroomReport();
void functionRoomReport();
void showlncome();

5

/*
HOTEL.CPP Method definitions for the 'Hotel' class "
*/
#include "hotel.h"
#include <iostream.h>
/1 if your compiler does not support the standard 'bool’ type,
// then this enumerated type easily simulates it. remove this line
/1 if your compiler does recognise 'bool":
enum bool {false, true};
// the hotel constructor installs the presentation equipment in
// function room 1, and then starts the main controlling method
Hotel::Hotel()
{
// pass the address of the presentation equipment object to the
// first function room
function_room{0].installPresentationEquipment(&lecture_set);
// start the main menu in the ‘'manageRooms' method
manageRooms();
}
// '‘manageRooms’ contains an iterating menu to provide the
// user interface to the system. It calls other methods of 'Hotel'.
void Hotel::manageRooms()
{
int menu_choice = 0;
do
{
cout << "Hotel Rooming System" << endl;
cout << "1. Book Room" << endl;
cout << "2. Vacate Room" << endl;
cout << "3. Count of Occupied Rooms" << endl;
cout << "4, Bedrooms Report” << endl;
cout << "5. Function Rooms Report" << endl;
cout << "6. Equipment Location"” << endl;
cout << "7. Move Equipment" << endl;
cout << "8. Projected Income For Today" << endl;
cout << "9. Quit" << end];
cout << "Enter choice ";
cin >> menu_choice;
switch(menu_choice)

/l each case calls another method of the 'Hotel' class
case 1 : bookRoom(); break;
case 2 : vacateRoom(); break;
case 3 : countOccupiedRooms(); break;
case 4 : bedroomReport(); break;
case 5 : functionRoomReport(); break;

171

An example program

172

case 6 : locateEquipment(); break;
case 7 : moveEquipment(); break;
case 8 : showlncome();
}
} while(menu_choice != 9);
}
/1 'bookRoom' scans through the appropriate array to book a customer into the
// first available (lowest numbered) room
void Hotel::bookRoom()
{
/I local variables for user input
int room_type;
int beds_required;
char customer_name([80];
char payee_nam=[80];
/! local control variables
bool room_available = false;
int counter;
// get the required room type
cout << "Enter room type (1 for bed, 2 for function) “;
cin >> room_type;
// if a bedroom is required...
if(room_type == 1)

cout << "Enter number of beds required (1 or 2) ";
cin >> beds_required;
/1 if a single bedroom needed, check rooms indexed 0 1o 9...
if(beds_required == 1)
{
counter = 0;
while(bedroom[counter].isOccupied() && counter < 10)

{

counier++;

// it we found an empty room before counting through all ten, change the
// value of 'room_available’
if(counter < 10)

{
room_available = true;
}
/1 if a double bedroom needed for Mr. & Mrs. Smith, check rooms indexed 10 to 39...
else
{
counter = 10;
while(bedroom[counter].isOccupied() && counter < 40)
{
counter++;
}

/1 if we found an empty room before counting through to forty, change the
// value of 'room_available'
if(counter < 40)

{
}

room_available = true;

}

/1 if the appropriate types of bedroom are all full
if(room_available == false)

An example program

{
}

// if a room is available, book it
else
{
// enter the customer name
cout << "Enter name of customer booking bedroom *;
cin >> customer_name;
// enter the payee name
cout << "Enter name of payee (company name or \"PRIVATE\") ";
cin >> payee_nhame;
cout << customer_name << " is booked into bedroom " << (counter + 6) << endl;
// occupy the room
bedroom[counter--].occupyRoom(customer_name, payee_name);

cout << "No bedrooms available" << endl;

}
/I if a function room is required
else
{
counter = 0;
while(function_room[counter].isOccupied() && counter < 5)
{

counter++;

if(counter >= 5)

{
cout << "No function rooms available" << endl;
}
else
{

/l enter the customer name
cout << "Enter name of customer booking function room ";
cin >> customer_name;
// enter the payee name
cout << "Enter name of payee (company name or \"PRIVATE\") ";
cin >> payee_name;
// occupy the room
cout << customer_name << " is booked into function room " << (counter + 1)
<< endl;
function_room[counter].occupyRoom(customer_name, payee_name);

}
}

// 'vacateRoom' allows a customer to leave, and makes the room available
void Hotel::vacateRoomy()
{
// local variables
int room_number;
bool was_occupied = false;
// display the numbers of occupied function rooms
cout << "Occupied function rooms are:" << endl;
for(inti =0; i <5; i++)

{
if(function_room([il.isOccupied())
{
cout << (i+1)<<"";
}

173

An example program

}

cout << endl;

// display the numbers of occupied bedrooms
cout << "Occupied bedrooms are:" << endl;
for(i = 0; i < 40; i++)

{
if(bedroom(i].isOccupied())
{
cout << (i+6)<<"";
}
}
cout << endi;

// ask the user which room to vacate
cout << "Enter number of room to vacate ";
cin >> room_number;

// if the room is an occupied function room, vacate it
if(room_number >=1 && room_number <=5)

if(function_room[room_number-1].isOccupied())

{
function_room[room_number-1].vacate();
was_occupied = true;
}
}
/1 if the room is an occupied bedroom, vacate it
else

if(bedroom[room_number-6].isOccupied())

bedrcom[room_number-6].vacate();
was_occupied = irue;

}

// check to see if a room was actually occupied and vacated, and display
/I an appropriate message
if(was_occupied == true)

{

cout << "Room number " << room_number << " vacated" << endl;
}
else
{

cout << "Room " << room_number << " was not occupied" << endl;
}

}

// ‘moveEquipment’ reallocates the equipment to another function room
void Hotel::moveEquipment()

{

int current_location;
// display the current room location of the equipment
for(inti=0;1 < 5; i++)

if(function_roomf{il.hasEquipment())

{
cout << "Presentation equipment is in room " << (i+1) << endl;
current_location = i;

}
// get the new room number

174

An example program

int room_numbetr;
coui << "Which room do you wish to move it to? ";
cin >> room_number;
/1 if a valid room number, move the equipment
if(room_number >= 1 && room_number <= 5)
{
function_room[room_number - 1].installPresentationEquipment(&lecture_set);
function_room[current_location].removePresentationEquipment();
cout << "Equipment moved to room " << room_number << endl;
}
//'if not a valid room number, leave the equipment where it is and display
// a message

else
{

cout << "Invalid function room number" << endl;
}

}

/ 'locateEquipment' displays the number of the function room containing the
/Il presentation equipment
void Hotel::locateEquipment()

{ for(inti = 0; i < 5; i++)
if(function_room([il.hasEquipment())
{ cout << "Presentation equipment is in room " << (i+1) << endl;
} })
}

// 'countOccupiedRooms' uses the class method 'getCustomerCount' to
/1 display the number of customers in the hotel
void Hotel::countOccupiedRooms()
{
cout << "Number of rooms currently occupied is " << Customer::getCustomerCount()
<< endl;
}
// 'bedroomReport' displays the room numbers, occupants and payees of
// occupied bedrooms
void Hotel::bedroomReport()

{

for(int i = 0; i < 40; i++)

/1 if this room is occupied, display its details
if(bedroomli].isOccupied())

{
cout << "Room number " << bedroom[i].getRoomNumber() << " is occupied by ";
cout<< bedroom[il.getCustomerName() << ", with Payee "
<< bedroom[i}l.getCustomerPayee() << endl;
}

}

// 'functionRoomReport’ displays the room numbers of occupied function rooms
void Hotel::functionRoomReport()

{

cout << "The following function rooms are occupied: ";
for(inti = 05 1 < 5; i++)
{

if(function_room{il.isOccupied())

175

An example program

176

{
cout << function_room{il.getRoomNumber() << ", ";
}
cout << endl;

}

// 'showlncome' scans through the rooms, adding the income from an
// occupied room to the total
void Hotel::showincome()
{
/' local variables
float total_income = 0;
float tariff;
// add the income from occupied function rooms to the total
for(inti=0; i <5; i++)

{
if(function_room{i].isOccupied())
{
total_income += FunctionRoom::getFunctionTariff();
}

// add the income from occupied bedrooms to the total, applying the
// different tariffs for single and double rooms
for(i = 0; i < 40; i++)
if(bedroom{il.isOccupied())

tariff = bedroom[il.getNumberOfBeds();

if(tariff == 1)
{

total_income += Bedroom::getSingleTariff();
}
else
{

total_income += Bedroom::getDoubleTariff();
}

}

}
/I display the result

cout << "the total projected day\'s income is: £" << total_income << endl;

}
/*

HOTLMAIN.CPP The 'main' function that creates the Hotel object
*/
#include "hotel.h"
/1 in ‘main’, an object of the 'Hotel' class is instantiated. its constructor does the rest.
void main()

Hotel solent_hotel;

10 Introduction to polymorphism

Overview

In this chapter, the various types of polymorphism are introduced and classified and ‘ad
hoc” and ‘universal’ polymorphism are compared. Coercion and casting are demon-
strated using C++ syntax.

The meaning of ‘polymorphism’
The word ‘polymorphism’ is derived from a Greek word (‘polumorphos’) with two
roots:

Polus (many) + Morphe (shape/form) = Polumorphos

It therefore means ‘many-shaped’ or ‘having many forms’. The English word “poly-
morphe’ dates from the 19th century and was originally applied to different animal
forms arising in the same species, or different types of crystal in the same chemical
compound. When applied to object-oriented programming, it is used to mean different
forms of data being handled by the same type of process. This is achieved by various
forms of ‘overloading’; allowing operators and functions to behave differently in
different contexts. We may contrast this with the term ‘monomorphic” which is some-
times used to refer to non object-oriented languages, and simply means ‘having a single
form’; functions and operators have fixed and single meanings. However, languages
tend not to be entirely monomorphic, since operators are usually given the polymorphic
ability to work with more than one data type (see “coercion’ later in this chapter). Just to
make things more confusing, there are many different forms of polymorphism!
However, the underlying philosophy of polymorphism is that it ultimately makes
programs easier to express, because it reduces the number of different names we need to
use for processes which are similar but not identical.

When used in the context of object-oriented programming, polymorphism means that it
is possible to ‘overload” (use to mean more than one thing) the symbols that we use in a
program, so that the same symbol can have different meanings in different contexts.
What do we mean by ‘symbol’? In fact it encompasses two fundamental components of
our program source code:

1. operators
2. function (method) names

Since both may be overloaded to give polymorphic behaviour, we have both ‘operator
overloading’ and ‘function overloading’, and both of these have more than one aspect. In
essence, however, it means that the same symbol or function name can be used to apply
to different processes. In this chapter, we will introduce the various types of polymor-
phism and attempt to categorise them into types applicable to the available facilities in
C++. Following chapters will cover in detail the overloading of operators and methods.

Many types of polymorphism

Although there are many types of polymorphism they all have a common aspect, which
is the ability to generalise the messages that we send to objects. We can apply a generic

177

10 Introduction to polymorphism

name to a collection of methods implemented differently by different classes, and objects
of those classes will respond in class-specific ways to the same message. This ‘message’
will be in practice the calling of a method associated with an object or the use of an oper-
ator with objects as operands.

As a general example of polymorphic responses to a single message, we might ask the
same question of a number of people of different religious faiths. The question we ask
(i.e. the message we send) is the following:

‘What year is it?’

If you ask this question of, for example, a Christian, a Muslim and a Jew, you may well
get three different answers, because their calendars started counting at different points
in history. No doubt there are many variations on calendars in the world, giving many
different answers to the same question depending on the cultural ‘class’ of the person
answering. Something similar happens when a method is called in an object-oriented
program. That method may have the same name in different classes, but the response of
objects in each class may well be different. The important point is that we do not need a
different message to send to every different type of object in our system. A single
message is enough; each object is capable of supplying its own response, defined by the
class to which the object belongs. Polymorphism devolves responsibility for interpreting
a message down to the level of the object.

In a program we might define a method called ‘Print’ in a number of classes, but each
version of ‘Print’ would be specifically tailored to the class of the object being printed.
An object of class ‘Cheque’ will respond to the message ‘Print’ in one way, an object of
class ‘Report’ in another, a ‘Photograph’ object in yet another (Fig. 10.1). We do not have
to define methods with entirely different names such as ‘PrintCheque’, ‘PrintReport” and
‘PrintPhotograph’ which would make our programs much less flexible. Because the
objects themselves take responsibility for their different responses to the same message,
we are free to send generic messages to any set of objects with similar but class specific
behaviours.

PRINT > A Report

A Photograph

Fig. 10.1: Polymorphism means that different objects can
respond to the same message in different, class-specific ways.

XYZ Bank Ltd

ACME stuff company 4,000,000

A Cheque —P

four million pounds only e\[— X

178

10 Infroduction to polymorphism

Question 10.1 What makes a method ‘polymorphic’2
Methods are polymorphic when they are implemented differently for different types of object.

Categorising polymorphic techniques

Since there are a number of types of polymorphism it may be useful to classify some key
terms and their relationships. Cardelli and Wegner produced a ‘taxonomy’ (classifica-
tion) of polymorphic techniques [Blair et al, 1991 p.81] which is primarily divided into
‘ad hoc’ and ‘universal” types (Fig. 10.2), and provides a basis for an important general

distinction.
Polymorphism
Universal Ad Hoc
Parametric Inclusion Overloading Coercion

Fig. 10.2: Cardelli and Wegner's taxonomy of polymorphic techniques.

Put simply, this is that ‘ad hoc’ polymorphism is applicable in both traditional and
object-oriented programming environments, whereas ‘universal’ polymorphism only
applies to object-oriented systems. As the figure indicates, there are further subdivisions
of these types, ‘ad hoc” polymorphism covering ‘overloading” (which means specifically
overloading a function name by different sets of parameters) and ‘coercion’ (the tempo-
rary conversion from one data type to another). “Universal’ polymorphism divides into
‘parametric’ (using different parameter lists to create different instances of a single
method or class) and ‘inclusion’ (overloading methods in a classification hierarchy).
However, it will be necessary to expand on these terms in order to apply the various
forms in C++.

What follows is an attempt to summarise the various types of polymorphism that may
be implemented in C++.

Ad hoc polymorphism

‘Ad hoc’ is a Latin phrase which (roughly translated) means “for this purpose only’. In
other words, we use it to describe forms of overloading when they are applied in specific
rather than generalised contexts. Strictly speaking, the term ‘ad hoc polymorphism’ only
applies to what is known as “coercion’ (described later in this chapter) and the over-
loading of function names by their parameter lists, what we might call ‘parametric over-
loading’ (though it is usually referred to simply as ‘overloading’). One reason for
grouping these together under the ‘ad hoc” heading is that they are applicable both to
procedural and object-oriented programming.

179

10 Infroduction to polymorphism

Universal polymorphism

Whereas ad hoc polymorphism is characterised by the fact that it only works on a fixed
set of types, universal polymorphism can be applied to a general set of types which do
not need to be specifically defined. There are two ways of doing this; one is to use ‘para-
metric polymorphism’ (implemented with templates and described in Chapter 12). The
other is to use inclusion polymorphism (implemented with a classification hierarchy and
described in Chapters 13 and 14).

Question 10.2 What differentiates ‘ad hoc’ and ‘universal’ polymorphisme

Ad hoc polymorphism is applied ‘for this purpose only’; i.e. can be applied to a given function without reference
to any other. In contrast, universal polymorphism is applied generally to many types of object.

The various types of polymorphism that will be discussed in detail in the following
chapters are summarised below.

Operator overloading (Chapter 11)

Although there is some semantic similarity between coercion and operator overloading,
there are-important distinctions between them. Coercion only translates from one type
into another to allow assignments and arithmetic to take place. Operator overloading
provides new meanings for existing operators to enable them to work with user defined
types. Overloaded operators are generally inherited by derived classes.

Parametric overloading and genericity (Chapter 12)

We can apply polymorphism via parameters in two ways — parametric bverloading
(separate methods defined for each parameter set) or genericity (single methods and
classes able to handle parameters of different types).

parametric overloading

This gives us the ability to define a number of methods with the same name in a single
class, differentiated by their parameter lists. A useful context is the overloading of a
constructor to give alternative ways of creating an object of a particular class.

genericity

‘Genericity” or ‘parametric polymorphism’ refers to the creation of methods which are
generic; applicable to a range of objects. Whereas a method name overloaded by para-
meters will execute different implementations of the method depending on the type(s) of
parameter(s) it is passed, a generic method will execute the same implementation but be
able to accept a range of types as parameters. This is particularly useful when imple-
menting container classes (to build objects which contain other objects). In C++, gener-
icity is achieved by the use of templates (only introduced in version 2 of the language
and fully implemented in version 3). The power of templates allows us to build whole
generic classes, so that the creation of objects can depend on the types of parameters
provided to the constructor.

180

10 Introduction to polymorphism

Method polymorphism (Chapter 13)

This means using the same name for methods in different classes in a classification hier-
archy. As we know, a method defined in a base class is inherited by all derived classes,
which may or may not override that method definition. This may mean that a single
method definition can be applied to all classes in the hierarchy, or that some or all of the
classes define their own version of that method, either expanding or replacing the
method which has been inherited.

Run time polymorphism (Chapter 14)

This is method polymorphism or operator overloading where the type(s) of objects using
the methods or operators are not known until run time. In this case the compiler has to
use ‘dynamic binding’ to work out which version of the method/operator definition to
call. Messages in the source code are sent to a ’static’ identifier (a base class), and the
messages are received at run time by a ‘dynamic’ identifier (a derived class). When we
are using dynamic objects in a system, we frequently need to bind them to their methods
at run time.

Question 10.3 Why is genericity a form of universal polymorphism, while overloading is
‘ad hoc'2

Genericity means that a single function or class can be used with all types, and the key characieristic of universal
polymorphism is that it applies fo all types, not just specifically chosen ones. In conirasi, overloading is done for
one function or method at o time, regardless of any other functions in the system.

C++ syntax

While most of the syntax of polymorphism will be dealt with in the detailed chapters
which follow, it is useful to look at how automatic coercion works and also the syntax for
‘casting’, the explicit coercion from one data type to another. Although this has only
limited application, there are occasions when it can prove useful.

Coercion

The arithmetical operators with which we are familiar in all programming languages
exhibit a form of polymorphism known as ‘coercion’. While coercion itself is not an
object-oriented concept, it serves as a useful introduction to the idea of symbols (in this
case arithmetic operators) performing similar operations on different data types.

In C++, if we write something like:
intx=44+5;

we are using the addition (+) operator in a way which the compiler recognises — the
context of adding two integers.

Likewise if we write:
floaty = 5.9 + 4.55

then the compiler uses the ‘+" operator to add two floats. Any of the built-in numeric
types can be added in this way. In this sense the operators are already overloaded (can be
used in more than one context) because there is a single operator for ‘ints’, ‘floats’, ‘longs’

181

10 Introduction o polymorphism

etc, not a separate operator for each data type. Clearly life would be well nigh impossible
if this were not the case, since we would also need a different operator for all possible
combinations of different numeric data types, e.g. adding a ‘float’ to an “int’, or a “long’
to a ‘double’! When such operations happen in most programming languages, implicit
conversions take place so that we can perform arithmetic on mixed data types. For
example, if we perform the following arithmetic in C++:

intx =10;

floaty = 7.5;

doublez=x*y;
the compiler converts the lower” data types in an expression into the same type as the
‘higher’ one (‘lower” and ‘higher’ relate to the size of data storage). In this case, there
will be a conversion of ‘x’ (an integer) into a float, and a conversion of the result of x * y’
(both floats) into a double. These conversions are invisible to the programmer.

Casting

The fixed conversions between types provided by coercion can be extended explicitly if
required. Explicitly converting one data type to another is known as ‘casting’ and is also
common in non object-oriented languages.

Casting is necessary when the temporary results generated in the course of evaluating an
arithmetic expression can cause overflow errors or loss of precision.

Question 10.4 What is the difference between ‘coercion’ and ‘casting’e

Coercion is something the compiler does by default. Casting is something we must do explicitly. Both, however,
temporarily convert the data type of a variable.

There are two very similar ways in which we can explicitly change the data type of a
variable for the purposes of a temporary calculation. The first is the casting syntax which
is also used in C:

(data-type) variable
In this example, variable ‘X’ is temporarily converted to a float:
(float) x

The other syntax is only available in C++, and achieves exactly the same result but puts
the brackets around the variable name, not the type:

data-type (variable)
so our conversion above would appear as

float (x)
In the examples which follow, the latter C++ syntax will be used. However, in certain
rather obscure cases this form of casting will not work, and the alternative C syntax is
required.
The following program takes two integers from the keyboard and calculates the mean
average. As it stands there are some potential problems with it which the use of casts can
alleviate:

#include <iostream.h>
void main()

182

10 Introduction to polymorphism

int x, y, mean;

cout << "Enter 2 integers:" << endl;

cin >> x;

cin >>vy;

mean = (X +y)/ 2;

cout << "Mean average is: " << mean << endl;

}

First of all, let’s run the program:

Enter 2 integers:
3

3

Mean average is 3

This seems ok, but what happens if the numbers we add are somewhat larger? Poten-
tially, the intermediate value of “x + y” which is calculated before the division may be
larger than the maximum storage capacity of an integer data type. In the following
example, ‘x” and ‘y” are given values whose sum will be greater than the maximum
storage of a 2 byte integer

Enter 2 integers:
32000

32000

Mean average is -768

The result here is clearly nonsense, because the intermediate result has been truncated.
In such circumstances, we can cast the integers used in the expression into larger data
types so that the intermediate value is never too large for the available storage. In the
revised version of the program, ‘X’ is cast to a long integer. This also has the effect of
causing the compiler to automatically coerce ‘y’ to a temporary long, because it always
converts the operands of an expression to the type of the “highest’ variable (i.e. the one
with the largest storage).

#include <iostream.h>

void main()

{
int X, y, mean;
cout << "Enter 2 integers:" << endl;
cin >> X;
cin>>vy;
mean = (long(x) +y)/ 2;
cout << "Mean average is: " << mean << endl;

}

Running the program again with the previous data gives us a correct result:

Enter 2 integers:
32000

32000

Mean average is 32000

While we have used casting to deal with the problem of over-large intermediate results
in an expression, there is another potential flaw in our program which casting can solve.
This is the fact that the mean average of two integers is not necessarily an integer. In fact

183

10 Introduction to polymorphism

it will more often than not have a decimal fraction. Leaving aside the cast to ‘long’ for the
moment, we might therefore modify the original program as follows, so that the result of
the expression (i.e. ‘mean’) is a float rather than an integer:

include <iostream.h>

void main()

{

intx, y;

float mean;

cout << "Enter 2 integers:" << endl;

cin >> X;

cin>>y;

mean = (X + y)/ 2;

cout << "Mean average is: " << mean << endl;
}

This may look like a solution, but in fact it does not fully solve the problem. If we run the
program as it stands, we still fail to get a decimal part in the result:

Enter 2 integers:
3

2

Mean average is 2

Why does this happen? It happens because although the result of the expression is stored
in a float variable, the operands on the right hand side of the expression are integers, so
there is no automatic conversion to a higher type. Again, casting is a useful tool. In this
case, we can cast the two integers to temporary floats. This allows us to have a fractional
part in the result, and achieves the extra storage required for large intermediate results,
since the storage of a float is greater than the storage of an integer.

The final version of our program now looks like this:

include <iostream.h>
void main()
{
intx,y;
float mean;
cout << "Enter 2 integers:" << endl;
cin >> X;
cin>>vy;
mean = (float(x) + y) / 2;
cout << "Mean average is: " << mean << endl;
}

Now we can run the program with large numbers and/ or numbers which produce frac-
tional results:

Enter 2 integers:

3

2

Mean average is 2.5

Casting is a useful tool to have when writing arithmetic expressions in C++, because in
certain circumstances it means the difference between an accurate result and nonsense.
We should always be aware that the temporary values which are being stored when an

184

10 Introduction to polymorphism

expression is being evaluated may cause overflow errors or loss of accuracy. In these
cases, casting can usually solve the problem.

Summary of key points from this chapter

1. Polymorphism means "having many forms’. In an object-oriented program, methods
and operators can have many forms by being “overloaded’ in various ways.

2. Polymorphism passes the responsibility for responding to a message to the object.
The same message evokes class-specific responses in different objects.

3. Cardelli and Wegner classified polymorphic techniques into ‘ad hoc’ and “universal’
types. Ad hoc techniques (overloading and coercion) are not unique to object-
oriented languages, but universal techniques are.

4. In object-oriented systems, we can classify those types of polymorphism that relate
to methods and operators together, because they exhibit similar characteristics,
including the ability to be dynamically bound at run time.

5. Genericity (parametric polymorphism) is a powerful tool allowing us to create
generic functions, methods and classes.

6. Coercion is an automatic activity of the compiler, converting data types to ‘higher’
types in expressions.

7. In C++, we can explicitly cast data types into new (temporary) types in order to
maintain accuracy in arithmetic expressions.

Exercises
1. When displaying ‘char’ variables in a ‘cout’ statement, the character, not the ASCII

value is displayed. In contrast, an integer variable displays a number. Write a
program that counts from 92 to 122, displaying each number and its ASCII character
by casting from type ‘int” to type “char’.

185

11 oOperator overloading

QOverview

In this chapter, the applications and syntax of operator overloading are explained.
Syntax examples show how relational, arithmetic and assignment operators can be
overloaded.

Operator overloading

Operator overloading means making the compiler’s built in operator symbols work with
classes defined by the programmer. Operators such as the arithmetic and relational oper-
ators have certain fixed meanings, applicable to all the built in data types such as int and
float, but we can also make these operator symbols work with our own classes. This is
made possible in some object-oriented languages by overloading the meaning of an
operator, so that its behaviour can be polymorphic; implemented differently for different
classes. This is a similar idea to that of coercion, which allows a single operator to be
used with a range of types.

To perform operations on classes similar to those available for the built in data types, we
need to explicitly overload the chosen operators so they can be applied to objects of a
specific class. For example, if we want to use the addition operator (+) with objects, the
compiler will have to interpret statements like:

object3 = object1 + object2

It can only do this if we code the mechanism ourselves. In effect, the +” operator (and
also the ‘=" operator) will have to be overloaded to become a method of the class (i.e. one
which objects of the class can use.) By overloading operators in this way we can give all
the classes in a system a common interface, allowing us to perform similar operations on
a range of different objects (Fig. 11.1).

Fig. 11.1: Operator overloading allows the same set of operators
to be used with objects of many different classes.

186

11 Operator overloading

Question 11.1 What kinds of objects might benefit from being able to use overloaded
operators such as the arithmetic operators?

Objects whose state is defined by numeric data may find overloaded operators useful. Another example is
strings; a “String” class might usefully overload the '+ operator for concatenation [{appending one string fo
another).

Overloading and the assignment operator

One operator that is already overloaded to work with objects as well as simple data
types is the assignment ('=") operator. We have already used this in the context of the
default copy constructor in Chapter 5. Remember that we can instantiate an object by
making that object’s attribute values equal to those of another object that already exists.
The syntax, you may recall, is to use the assignment operator:

class_name object2 = object1;

This means that ‘object2’ is instantiated with the same state as ‘object1’. In fact we are not
restricted to using the assignment operator in a copy constructor; it has the default
behaviour of making one object’s attributes equal to those of another object. We are able
to state:
object2 = object1;

and all corresponding attributes will be copied from ‘object]” to “object2’. Although the
compiler provides this default behaviour, we may alternatively override this with our
own overloaded version of the assignment operator. This is needed where pointers are
involved (for example pointers to strings of characters); there may be pointers inside the
object that by default will simply have the address they reference copied to the other
object, rather than the actual data. In such cases, we may well wish to override this
default behaviour of redirecting pointers, and replace it with a mechanism that copies
the actual data from one object to another. As a general rule of thumb, if we have had to
implement a copy constructor to deal with pointers, then we need to do the same for the
assignment operator (and vice versa).

Overloading operators for a class

Assignment is a fundamental operation on all classes and types, which is why a default
implementation is provided. However, no default behaviour is provided for other oper-
ators when used with classes, so we need to specifically overload operators for objects
that we want to use in arithmetic or relational expressions.

Suppose we have written a class that represents a set of student grades, and create a
separate object of this type in a program for each student. Perhaps the objects have just
two attributes like this:

Student Grade

maths grade

english grade

Each subject grade attribute might be an integer representing a percentage grade. No
doubt there would be various methods associated with the class, but what overloaded

187

11 Operator overloading

operators might be useful? Operations we might want to perform on ‘StudentGrade’
objects could include (among others) looking for the highest grade, sorting into order
and finding the average.

To find the highest grade, and also for sorting, an overloaded >’ (greater than) operator
would be useful. How about the average student grade? We would need to add all the
student totals together and then divide by the number of students. We might do this by
returning the various values from each object and processing them outside the objects,
but this would be a bit clumsy and not a very object-oriented approach. How much
better it would be if we could say something like:

grade_total = student1 + student2;
and thereby get a total of grades from ‘studentl” and ‘student2’ stored in ‘grade_total’
(i.e. add two student grade objects together). Explicit (user-defined) operator over-

loading is about this kind of process, where appropriate operator functions can be
applied to new data types as well as those which are an inherent part of the language.

Question 11.2 Which operator would we overload fo find out if two student grades are the
same?

We would overload the ‘== operator.

The semantics of overloaded operators

In the example above we are using the addition operator to add two objects together,
which is what we would expect it to do. In practice, an operator can be overloaded to
mean something totally different from what we might expect, so that it is possible for
instance to overload the ‘+’ operator so that it would subtract one object from another!
Clearly, although this is possible it results in highly obscure and unreadable code. Oper-
ator overloading must be done in the spirit of the what is being overloaded. The ‘+” oper-
ator for example should only be overloaded to add objects together (though “adding’ can
reasonably include concatenation; adding one string of characters to the end of another).

Inheritance of overloaded operators

Like other methods, operators overloaded in one class are inherited by derived classes.
The exception to this is the assignment (‘'=") operator which, because it has a default
behaviour for all objects, can only be explicitly overridden for individual classes and not
automatically for their descendants. The user-defined behaviour of any other operator
may be inherited by descendant classes, but may well need to be overridden anyway
since operators tend to work on the whole object rather than just one or two attributes.
Our addition operator in the ‘StudentGrade’ example uses all the given attributes, and if
there were more subject grades then these would also be part of the process. Therefore,
any changes to the attribute set of classes deriving from ‘StudentGrade” would require
changes to the behaviour of the addition operator.

Let us assume that the ‘StudentGrade’ class described above represents one set of
students who are studying two subjects, but that it also serves as a base class for a class
called “‘ExtendedGrade’. This class is used to represent students who are studying a
wider range of subjects than just English and Maths. For example, they may have a set of

188

11 Operator overloading

five subjects, inheriting two from the base class (Fig. 11.2 shows this inheritance using
UML notation.)

Student Grade

maths grade

english grade

operator +

ExtendedGrade

science grade
languages grade
technology grade

Fig. 11.2: ‘ExtendedGrade’ objects will inherit the overloaded '+’ operator
from ‘StudentGrade’ but it will not have an appropriate functionality.

‘ExtendedGrade” will inherit the overloaded ‘+ operator from ‘StudentGrade’, but this
will not be appropriate for adding together objects of the derived class. Although it will
work with two ‘ExtendedGrade” objects, it can only return as a result an object of the
‘StudentGrade’ class, i.e. it can only generate totals for the Maths and English grades.
‘ExtendedGrade’, then, will need its own overloaded operator.

In general terms, although overloaded operators (other than ‘=’) are inherited by derived
classes, it is often necessary to redefine their behaviour for all classes in a hierarchy.

Question 11.3 Why are inherited overloaded operators often not very useful in the derived
class?

Because operators tend to address the object as a whole rather than a subset of its atfributes, their semantics are
more class specific than other methods. Therefore an inherited overloaded operator may not be appropriate to a
derived class object.

C++ Syntax

The syntax required for overloading operators in C++ is:

1. The ‘operator” keyword;

2. Any of the 40 operators that can be overloaded, listed in Stroustrup [1995, p.592].
These operators are also listed at the end of this chapter.

Although there are a large number of operators that may be overloaded, we are most
likely to find overloading useful for the arithmetic and relational operators described in
Chapter 3.

189

11 Operator overloading

The default assignment operator

Since the assignment operator has a default behaviour, we do not necessarily need to
overload it. In the following example, one object of the "Point’ class is made to equal
another object of the same class:

/*
POINT.H definition of 'Point' class
*/
class Point
{
private:
intx,vy;
public:
void setXY(int x_in, int y_in);
int getX();
int getY();
b
// the 'setXY' method sets the values of both co-ordinates
void Point::setXY(int x_in, int y_in)
{ -
X = X_in;
y=y_in;
}
// selector methods to get the values of 'x' and 'y’
int Point::getX()
{

return x;

}
int Point::getY()
{

}

return y;

This program tests the behaviour of the default assignment operator

#include "point.h"
void main()
{
// instantiate two 'Point’ objects
Point pointt, point2;
// set the position of point1 to 100,100
point1.setXY(100, 100);
// use the default behaviour of the '=' operator to give 'point2' the same coordinates
point2 = pointi;
// retrieve and display the coordinates of the points
cout << "The position of point 1 is " << pointl.getX() << "," << pointi.getY() << end};
cout << "The position of point 2 is " << point2.getX() << "," << point2.getY() << endl;

}

Output from the program shows the position of the second point is the same as that of
the first:

The position of point 1 is 100,100
The position of point 2 is 100,100

This use of the default behaviour of the assignment operator is perfectly adequate in
many cases, but we must be aware of two aspects of using the operator with pointers:

190

11 Operator overloading

1. Pointers to dynamic objects

2. Objects with pointers inside them

Pointers to dynamic objects:

As we saw in Chapter 6, if the assignment operator is used with dynamic objects then it
simply redirects the pointer on the left. For example, if “pointl” and ‘point2’ were
pointers referencing dynamic objects, then the following line of code would simply redi-
rect “point2’ to the address of ‘point1”:

point2 = point1;
This means that if ‘pointl” is destroyed, then “point2” is no longer referencing a valid

object. To ensure that the assignment actually copies the second object to the first, we can
dereference the pointers:

*point2 = *pointl;
This dereferencing technique can be used for any operator used with dynamic objects.

However, this is only safe if all the pointers involved are currently referencing objects,
otherwise memory will be corrupted.

Objects with pointers inside them:

Similar problems can arise when pointers are used inside objects. Again, the copying
object only copies the addresses, not the data from the original object, with similar poten-
tial for disaster if the original object disappears. In this case, the solution is to provide
our own overloaded assignment operator. The syntax for doing this is described later in
this chapter.

Question 11.4 What is wrong with this code fragment?

Point* xy1,

Point* xy2 = new Point(0,0);

*XY1 = *xy2;
We should not assign the value of the object referenced by xy2 to the dereferenced pointer xy1, because xy1 is
not pointing to an object. Therefore we are copying an object to unassigned memory.

Syntax for operator overloading
The syntax for overloading an operator is as follows, using the keyword ‘operator’:
return_type operator symbol (parameter list...)

The return type for relational operators is a boolean value (the ANSI standard states that
all relational operators return type ‘bool’), which may be true or false, typically repre-
sented by 1 or 0 respectively (Fig. 11.3).

returns true (1)
7 orfalse (@)

ObJect using Parameter
operator object

Fig. 11.3: Relational operators return true or false.

191

11 Operator overloading

Arithmetic operators return an object of the appropriate class (Fig. 11.4), generally the
same class as the other objects in the expression.

A temporary object is returned
from the operator method

, N
, N

v \
T ! !
Object to Object using Parameter
receive result operator object

N
N
\

Fig. 11.4: Arithmetic operators return an object of the appropriate class.

In either case, the parameter list generally consists of an object of the class, passed by
reference rather than by value to avoid making an unnecessary copy. The ‘const’ prefix is
therefore frequently used to indicate that, although the object has been passed by refer-
ence, it should not be modified by the method. For a class called ‘Object’, we might
expect to see methods such as:

o ‘less than’ (a relational operator): int operator < (const Object& object);

e ’‘minus’ (an arithmetic operator): ~ Object operator - (const Object& object);

Overloading relational operators

The easiest operators to overload are the relational operators (described in Chapter 3),
because their return value only has to represent true or false, which (as indicated above)
we can represent with 1 and 0 respectively.

For this example, we will overload the equality operator (==) for the ‘Point’ class so we
can compare two points and see if they are equal. The method will return an integer and
take another object of the “Point’ class as a parameter, i.e.

int operator == (const Point& point);

Remember that the parameter object is passed by reference simply to avoid making an
unnecessary copy. The implementation of the method will return 1 if the attribute values
of one object match the attribute values of the other, otherwise it will return zero.

This is how the class declaration appears after adding the overloaded operator:

class Point
{
private:
intx,vy;
public:
void setXY(int x_in, int y_in);
int getX();
int getY();

int operator == (const Point& point);
b
This is the definition of the overloaded ‘==" operator. It compares both attributes with
the parameter object’s attributes, returning true or false as appropriate. This implemen-

192

11 Operator overloading

tation returns an integer with the value 1 (true) or 0 (false), but the ‘bool” data type can be
used instead if available:

int Point::operator == (const Point& point)

{
if(x == point.getX() && y == point.getY())
return 1;
}
else
{
return 0;
}
}

This example program shows the equality operator being used with Point objects:

#include "point.h"

#include <iostream.h>

void main()

{

/ instantiate two 'Point' objects
Point point1, point2;

/I set the positions of the objects to be identical
pointt.setXY(100, 100);
point2.setXY (100, 100);

// compare the points with the overloaded operator
if(point1 == point2)

{
cout << "Point " << point1.getX() << *, " << pointi.getY();
cout << " and point " << point2.getX() << ", " << poini2.getY();
cout << " are the same" << endl;

}

}

The output from this program is:

Point 100, 100 and point 100, 100 are the same

Overloading operators for the ‘StudentGrade’ class

For the next example, we will overload an operator for the StudentGrade class described
earlier in this chapter. The class (before adding any operators) might look something like

this:

class StudentGrade

{

private:
int maths_grade;
int english_grade;

public:

// constructor

StudentGrade();
// selector methods
int getMathsGrade();
int getEnglishGrade();
/I modifier methods
void setMathsGrade(int grade_in);
void setEnglishGrade(int grade_in);
b

193

11 Operator overloading

// the constructor initialises the grades to eliminate any 'rogue’ values
StudentGrade::StudentGrade()
{
maths_grade = 0;
english_grade = 0;
}
// selectors
int StudentGrade::getMathsGrade()
{

return maths_grade;

}
int StudeniGrade::getEnglishGrade()

{ return english_grade;

3/ modifiers

void StudentGrade::setMathsGrade(int grade_in)
{ maths_grade = grade_in;

zloid StudentGrade::setEnglishGrade(int grade_in)
{ english_grade = grade_in;

}

If we wanted to add two student grade objects together without an overloaded operator,
we would have to do something like the following (assuming we have two objects called
‘student1” and ‘student?’ containing grades, and a third object called ‘grade_total” which
is to contain the overall grade):

#include "studgrad.h"

void main()

{
StudentGrade grade_total, student1, student2;

// some code would be necessary here to put the various

// grades into the student grade objects
int temp_maths, temp_english;
temp_maths = student1.getMathsGrade() + student2.getMathsGrade();
grade_total.setMathsGrade(temp_maths);

// and so on for the English grade...

}

Clearly this is rather clumsy and inflexible. What we want to be able to do (as we noted
earlier in the chapter) is something much simpler like:

grade_total = student1 + student2;

but the compiler won't recognise the data type ‘StudentGrade’ (which all student grade
objects are instances of) as being one of its built in types which can be added. Therefore
we will have to overload the “+ operator so that it can be used with objects of this class.

The relational operators return a single value representing true or false, but the arith-
metic operators must return an object. For example, the addition operator must return an
object which contains the result of the addition. If we were to add together two ‘Student-
Grade’ objects, then we would be evaluating expressions like:

grade3 = gradel + grade2;

194

11 Operator overloading

The addition of ‘gradel” and ‘grade2’ returns an object, the value of which is assigned to
‘grade3’ (using either the default or a user defined assignment operator).

To add two StudentGrade objects together, then, we could include the following proto-
type in the class declaration:

StudentGrade operator + (const StudentGrade& grade_in);

Because the addition operator returns a result, the return type is an object of the class
containing the appropriate totals, in this case of course a ‘StudentGrade’ object. This is
followed by the keyword ‘operator” and the ‘+ symbol, because it is the ‘+" operator we
want to overload. The parameter is also an object of the class (passed by reference),
which is added to the object calling the method. When we say:

grade_total = student1 + student2;

it is “‘studentl’ which calls the operator method, with ‘student?” as it’s argument and
‘grade_total” as its return value. All of the C++ arithmetic operators can be overloaded in
this way.

When the overloaded operator is called, we will add the Maths grades of the two objects
together, and also the English grades. In order do this we must access the attributes of
the object which is calling the method, and the attributes of the parameter object.
Because the overloaded operator is an object method, we are able to access the private
attributes of the parameter object directly using the dot operator. The attribute
‘maths_grade’ of the parameter object can therefore be referred to as:

grade_in.maths_grade

Since the operator has to return an object of the class as the result of the addition, we
have to create a temporary object in the body of the method. This object exists long
enough to pass the result of the operator to the receiving object. In the following
example, a temporary object of the StudentGrade class called “temp_student’ is instanti-
ated. As soon as the result of the method has been returned, this object will fall out of
scope and be destroyed.

If the method body is defined outside the class, it will appear as follows. Note the syntax
of return type, class name, scope resolution operator, ‘operator” keyword, overloaded
symbol and parameter list. The implementation of the method takes advantage of the
fact that both the parameter object and the returned object are members of the same class
as the one using the method, so their attributes can be directly accessed using the dot
operator. An alternative implementation could simply use methods to get and set the
various values being calculated.

StudentGrade StudentGrade::operator + (const StudentGrade& grade_in)

{

// create a temporary object of the class to hold the calculated values
StudentGrade temp_student;

// add the attributes of the two objects, storing the results

// in the attributes of the temporary object
temp_student.maths_grade = maths_grade + grade_in.maths_grade;
temp_student.english_grade = english_grade + grade_in.english_grade;

/I return the temporary object as the result of the method
return temp_student;

}

195

11 Operator overloading

The following program shows how the overloaded ‘+" operator can be used with objects
of the StudentGrade type. Note that, unlike the other StudentGrade objects, ‘grade_total’
does not have its initial values set by calling methods. The same is true of the temporary
object instantiated in the implementation of the operator + method. This is why the
initialisation of values in the constructor is important, because we may otherwise be
adding a grade to an existing ‘garbage value’ which happens to be in that attribute by
default.

#include <iostream.h>
#include "studgrad.h"
void main()
{
/I create three objects of class StudentGrade
StudentGrade studentl, student2, grade_total;
// give the first two initial values
student1.setMathsGrade(50);
student1.setEnglishGrade(65);
student2.setMathsGrade(43);
student2.setEnglishGrade(49);
// use the '+ operator to add two objects together, putting the result
// in the third object
grade_total = student1 + student2;
// display the result
cout << "Total Maths " << grade_total.getMathsGrade() << end};
cout << "Total English " << grade_total.getEnglishGrade() << endl;

}
The output from this program would be:

Total Maths 93
Total English 114

To make this into a more realistic example, we could use an array of ‘StudentGrade’
objects to make them more easily processed, and produce an average grade for each
subject. In this example, a constant is used to size the array. Instead of using literals in the
code we will also enter the grades at the keyboard:

#include <iostream.h>
#include "studgrad.h”
void main()
{
// use a constant for the number of students. only 2 in this
// example to keep the test run short!
const int MAXSTUDENTS = 2;
// create an array of student grade objects
StudentGrade students[MAXSTUDENTS];
// create a separate grade total object
StudentGrade grade_total;
// temporary store for grades entered from the keyboard
int temp_grade;
// loop to enter grades for all students - 'i + 1" is used in the output
// simply to avoid starting at 'student 0'
for(int i = 0; i < MAXSTUDENTS; i++)
{
cout << "Enter Maths grade for student " <<i+1<<"";
cin >> temp_grade;
students]i].setMathsGrade(temp_grade);

196

11 Operator overloading

cout << "Enter English grade for student " <<i+1<<"";
cin >> temp_grade;
students|il.setEnglishGrade(temp_grade);

/! iterate through the array, using the overloaded '+' operator to
// add all the student grades together. note that we cannot use
// the '+=" shorthand with the objects since it has not been explicitly
/I overloaded for use with this class
for(i = 0; i < MAXSTUDENTS; i++)
{

grade_total = grade_total + students[i];

// display the resuits. note that the averages may include decimal fractions

// s0 they are declared as floats, and the operands are also

// cast to floats from integers
float average_maths, average english;
average_maths = float(grade_total.getMathsGrade())/MAXSTUDENTS;
average_english = float(grade_total.getEnglishGrade())/MAXSTUDENTS;
cout << endl << "Average grades are:" << endl;
cout << "Maths: " << average_maths << endl;
cout << "English: " << average_english << endl;

}

The actual output of this program will, of course, depend on the values entered. In the
following test run, data entered at the keyboard is shown in italics:

Enter maths grade for student 1 45
Enter english grade for student 1 32
Enter maths grade for student 2 75
Enter english grade for student 2 81
Average grades are

Maths: 60

English: 56.5

Overloading the assignment operator

Earlier in this chapter we looked at the default assignment operator, and indicated that it
is sometimes necessary to provide our own implementation of this operator if an object
contains pointers. The following example (‘NamedPoint’) modifies our earlier "Point’
class so that it includes a pointer of type char used to reference a dynamic array. This
array will hold a string of characters representing the name of the point. This class
includes a copy constructor as well as the overloaded assignment operator because they
are generally similar; both copy data from one object to another. The class definition is:

class NamedPoint

{

private:
intx,y;
char* name;

public:
NamedPoint(char* name_in);
NamedPoint(const NamedPoint& n);
~NamedPoint();
void setXY(int x_in, int y_in);
void getXY(int& x_out, int& y_out);
char* getName();

197

11 Operator overloading

NamedPoint& operator = (const NamedPoint& in);
void show();
b
Notice that a destructor is also required to clean up memory when the object is
destroyed.

Let us look at the important methods of the class, including the assignment operator:

The constructor:

The constructor allocates enough dynamic memory to hold the name of the object by
finding the length of the parameter string (using the ‘strlen” function) and adding 1 to it
for the terminating *\0’. Then the memory is reserved using the ‘new’ operator and the
parameter string is copied (using ‘strcpy’) into the attribute.

NamedPoint::NamedPoint(char* name_in)

{
x =0;
y=0;
name = new char[strlen(name_in)+1];
strepy(name, name_in);

}

The copy constructor:

The copy constructor is very similar to the constructor in that it must also reserve
memory for the name of the object. The difference is that the parameter is not a string but
an object, from which the location and name are copied.

NamedPoint::NamedPoini(const NamedPoint& n)

{
X =N.X;
y=ny;
name = new char[strlen(n.name)+1];
strcpy(name, n.name);

}

The destructor:

The destructor frees up the memory used by the name by calling the array version of the
‘delete” operator.

NamedPoint::~NamedPoint()

delete [] name;

}

The assignment operator:

The assignment operator is almost identical to the copy constructor, except that it frees
up the memory occupied by the previous name before reallocating memory for the new
name. You will also notice that it has a return value (an object of the NamedPoint class)
though you might expect the method to be ‘void’. A void method would certainly allow
you to make one object equal to another, because the object that calls the method simply
copies its own attribute values from a parameter object, just like the copy constructor.
Why, then do we return a value? in fact it is only necessary in order to be consistent with

198

11 Operator overloading

the behaviour of the assignment operator on built in data types, which can be ‘chained’
together. For example, the following syntax is valid in C++:

intx, v, z;
x=10;
Z=y=X;

This declares three integers, gives a value to one of them and then makes the other two

equal to it in a single statement. This implies that an object using the assignment oper-
ator must always return a copy of itself that may then be used by another assignment

operator (Fig. 11.5).
Sobjects —> (object | =

Acopy isalso This object is Parameter
returned to made equal object
allow the to the
operator to parameter
be chained object

Fig. 11.5: The assignment operator changes the object but also
returns a copy to allow operators to be chained together.

How;, then, does an object return a copy of itself from a method? The answer is to use the
‘this” pointer, first introduced in Chapter 9. Remember that the “this’ pointer is effectively
an attribute of the class that always references the current object. We may return ‘this’ to
provide a copy of the object to another assignment operator. In order for an overloaded
assignment operator to work properly in all contexts, it must return a reference to an
object of the class, so the ‘this” pointer is de-referenced in the implementation of the
method:

NamedPoint& NamedPoint::operator = (const NamedPoint& in)

{

/I copy the other object's position
X = in.x;
y=iny;

// clear the old name from memory
delete [] name;
// copy the other object's name
name = new char[strlen(in.name)+1];
strepy(name, in.name);
// return the de-reference of ‘this' object to allow the operator to be chained
return *this;

}
The ‘show” method simply displays the state of the object

void NamedPoint::show()

{
}

This example program tests the constructor, copy constructor and assignment operator:

cout << name << " X: "<<x << " Y: " <<y << endi;

199

11 Operator overloading

#include "npoint.h"
void main()

{

// construct and display two 'NamedPoint’ objects
NamedPoint point1("origin"), point2("destination");
pointl.setXY(0,0);
point2.setXY(100,150);
cout << "Details of point 1: " << endl;
pointl.show();
cout << "Details of point 2: " << endl;
point2.show();

// demonstrate the copy constructor by creating a third object
NamedPoint point3 = point1;
cout << "Details of point 3 after copy constructor from point 1: " << endl;
point3.show();

/I demonstrate the assignment operator by changing the third object
point3 = point2;
cout << "Details of point 3 after assignment to point 2: " << endl;
point3.show();

}

The output from this program is:

Details of point 1:

origin X: 0Y: 0

Details of point 2:

destination X: 100 Y: 150

Details of point 3 after copy constructor from point 1:
origin X: 0Y: 0

Details of point 3 after assignment to point 2:
destination X: 100 Y: 150

A class that has methods including a default constructor, a copy constructor, a destructor
and an assignment operator can safely be used in most of the contexts in which ordinary
data types are used, including being assigned, declared and used as “pass by value’ para-
meters to methods and functions. Because these methods are so important, they are all
supplied as defaults to user defined classes. However, as we have seen, we sometimes
need to provide our own implementations of these methods where more complex classes
containing pointers are created. The provision of these methods gives the class what
Coplien calls ‘orthodox canonical class form’ [Coplien, 1992 p.38], which is a compli-
cated way of saying that all your classes should have these methods. You should
consider for each of your classes whether the default implementations are acceptable or
whether you need to ‘roll your own’.

Using operator overloading

There are many aspects to the overloading of operators in C++, far too many to be
covered in this chapter. The primary reason for overloading operators is so that objects of
different classes can be manipulated in standard ways, for example to be used as para-
meters to generic functions. This application is one which we will investigate in the next
chapter.

200

11 Operator overloading

Operators that may be overloaded

The following table of operators that may be overloaded comes from Stroustrup [1995,
p.592]. Most of these you will probably never want to overload! Many are beyond the
scope of this book and only necessary for specialist applications.

Dynamic memory management:
new delete

Arithmetic and assignment operators:

- - . / %
+= = = /= %=
++ -- =

Bitwise operators (including bitwise assignment and shifting):

A & | ~

A= &= f= << >> >>= <<=
relational operators:

< > == = <= >=
logical operators

! && I

de-referencing operators

*

-> ->
comma operator ’

function call operator 0
subscripting operator Il

For more detail, see Stroustrup [1995, Chapter 7 pp.225-254 and pp.592-594]

Summary of key points from this chapter

1.

Operators may be overloaded to work with user defined data types (objects). This is
an extension of the idea of coercion, which allows a single operator to be applied to a
range of data types.

The assignment operator has a default behaviour when applied to objects, copying
the attribute values from one object to another. This behaviour may need to be over-
ridden where objects contain pointers.

Operators such as the addition operator may be overloaded to work with objects. It
is important, however, that the normal meanings of operators are not distorted (for
example subtracting with the addition operator). Operators should be overloaded in
the spirit of their normal usage.

Operators are inherited by derived classes in a similar way to other methods.
However, this is not the case with the assignment operator; derived classes do not
inherit overloaded assignment operators.

The syntax for overloading operators involves the “operator” keyword and one of the
40 available operators which the programmer is allowed to overload.

201

11 Operator overloading

6. Relational operators return ‘true’ or ‘false’, arithmetic operators return an object

containing the result of the expression and assignment operators return a copy of
‘this’ object to allow the operator to be chained.

Exercises

1.

202

Write an overloaded addition (+) operator for the ‘Point’ class that adds the coordi-
nates of one object to the coordinates of another. Write a program to test the operator.

Overload the ‘> (greater than) operator so that it can be used with ‘StudentGrade’
objects. In other words, the following expression should be valid:

if(student1 > student2)
{

}

The overloaded operator method should compare the total grade score (i.e. Maths
and English grades added together) and return one if the comparison is true, zero if
it is false. If your compiler supports it, use ‘bool” as the return type.

Create an array of five ‘StudentGrade’ objects and sort them using the overloaded >’
operator.

Implement an ‘ExtendedGrade’ class as outlined in this chapter, and provide a new
version of the overloaded ‘+ operator for it.

A popular candidate for making into a class is the ‘String’, to encapsulate the rather
complex handling of arrays we have seen so far to handle text based attributes.
Using the “NamedPoint’ class as the starting point, remove the integer attributes and
associated methods to leave only the string element (the pointer to ‘char’ and the
methods associated with it). Then add overloaded relational operators and an addi-
tion operator that will concatenate two strings (i.e. add one string to the end of
another).

12 Polymorphism by parameter

Overview

In this chapter, the use of parameters to give polymorphic behaviour to functions and
object methods is discussed. This covers two general types of polymorphism; over-
loading and genericity (or parametric polymorphism). The use of C++ templates in
creating truly generic functions is explained.

Using parameters for polymorphism

In Chapter 10, two different approaches to the overloading of methods by parameters
were introduced:

1. Overloading

‘ad hoc” overloading of a method name by differences in parameters — each version
of the method requires a different implementation.

2. Parametric Polymorphism

Genericity of a function, method or class able to handle different parameter types.
All data types are handled by a single implementation.

Parametric overloading

Ad hoc overloading of functions by differences in their parameter lists is a facility avail-
able in non object-oriented code, since it can be applied to any function, whether that
function is an object method (i.e. declared as part of a class) or not. Because we are first
and foremost interested in the object-oriented approach, our discussion will ultimately
focus on the ability to overload methods by their parameters within a single class.
However, we will begin by examining how to overload a simple function independent of
class definitions.

Overloading a function using parameter lists is a simple concept. It means that we can
give the same name to more than one function providing they have different sets of
parameters. The following functions would be different because the parameter types are
different; one takes a float parameter and one takes an int parameter. Even though both
functions have the same name, the compiler recognises them as having different
implementations:

aFunction(float value_in)

aFunction(int value_in)
The compiler can also tell apart functions that have different numbers of parameters, as
in this example:

anotherFunction(int value1)
anotherFunction(int valuel, int value2)

Overloading as ‘ad hoc’ polymorphism

This kind of polymorphism is classified as ‘ad hoc” because each version of an over-
loaded function requires a specific implementation. Fig. 12.1 shows a possible set of

203

12 Polymorphism by parameter

functions in a traditionally structured program. Each function processes an array of
integer data types only, returning different types of average.

mean(int[]) e mean(float[])

mode(int([]}

no ‘float’ version

implied for these

functions

median(int]])

Fig. 12.1: Overloading by parameter. Since it is an ‘ad
hoc’ method, it is used “for this purpose only’

If we overload one of these functions to deal with float values as well as integers, this has
no effect on any of the other functions. The overloaded function (‘mean’ in Fig. 12.1) now
has multiple forms (it is polymorphic) but its polymorphism is ‘for this purpose only’; it
has no effect on any of the other functions. They do not inherit the ability to handle float
parameters, nor are they obliged to follow suit by supplying their own versions of the
‘float” function.

The compiler can deduce which version of the function to call by the type of the para-
meter argument passed when the function is called. If ‘mean’ is called with an integer
array parameter, then the integer version of the function will be executed, but if a float
array parameter is provided, then the float version will be called.

A particular function or method name may be overloaded many times, and for each
different set of parameters, a different definition of the named function is implemented
(Fig. 12.2).

204

12 Polymorphism by parameter

Overloaded function function1’

Same function name: functionT(...)

Different parameter lists:

’ {(int) H (char) H (char®) H {float) H (double)‘

v v v y v

Separate implementations for each version of the function

Fig. 12.2: An overloaded function has a different
implementation for each parameter list.

You may have noticed that no return types have been suggested for these examples. This
is because functions cannot be overloaded by return type, only by parameter.

In an object-oriented system, we can use this facility to define more than one method
with the same name in a single class. This is particularly useful for example in
overloading the constructor, so that we can create new objects with different sets of
arguments.

Question 12.1 What might be the advantage of being able to overload the constructor?

Having an overloaded constructor gives us different ways of creating objects, allowing us to give certain default
behaviours to a given constructor and override other behaviours with parameters. Since we can overload the
constructor as many times as we like, this is a more flexible mechanism than simply giving default parameter
values to a single version of the constructor.

Parametric polymorphism (genericity)

The primary application of parametric polymorphism, also termed ‘genericity’, is in
object-oriented systems, since it is a means of handling all data types, including user
defined types, in a generic way. Such methods are therefore applicable to a range of
objects. There is an important distinction to be made between functions which are
simply overloaded by their parameters, and truly generic functions. We have discussed
the possibility of having an overloaded function name which will execute different
implementations of the function depending on the type(s) of parameter(s) it is passed. In
contrast, however, a generic method will execute the same implementation but be able to
accept a range of types as parameters. Fig. 12.3 illustrates that a generic function has a
single implementation, but is able to handle a range of data types.

205

12 Polymorphism by parameter

Generic function function2’

Same function name: function2(...)

Different parameter lists: /\\

‘ (int) H (char) H (char*) (float) double

\\““//

[Same implementation for each parameter type j

Fig. 12.3: A generic function has a single implementation for all data types.

In C++, genericity is achieved by the use of templates. A template will operate on any
data type for which the internal implementation is appropriate. For example, a template
function which compares two objects using the “>" operator and returns the higher will
operate on any data type for which the “>’ symbol is applicable. Since, through operator
overloading, we can explicitly overload the ‘>* operator to work with objects of any
classes we wish, templates can be a very useful tool in object-oriented systems.

What then are the differences in practice between overloading by parameter list, and
genericity? In simple terms it comes down to this:

¢ We often need to perform a similar process on different data types
¢ The data type(s) being processed are passed to a method as parameters

e With parametric overloading, each type of parameter will cause the compiler to use
a different (type specific) method

o With genericity, a single generic function is able to process all data types, including
those defined by the programmer (i.e. objects) — all data types are handled by one
(type generic) method

o Genericity allows us to create generic classes, as well as simply using generic func-
tions as methods

Question 12.2 In what way can genericity be seen as a more productive technique than
overloading?

Because overloading requires a different implementation to be provided for all possible parameter types, it is not
easily extensible to handle new types. In contrast, a generic function only has one implementation which may be
used for all parameter types, even those which may not be defined yet. This means that genericity provides a
much greater degree of reusability than overloading.

Generic functions

Genericity is a more powerful tool than parametric overloading for object-oriented
systems because it does not have to anticipate the type of data parameters which may be
supplied at run time. Therefore it is able to handle dynamic objects of disparate types.
However, this approach only works if we are able to process all data types in a particular

206

12 Polymorphism by parameter

way, which means we have to have a common interface for all objects used as parame-
ters. Fig. 124 illustrates the working of a generic method ('ISEQUAL?’) which compares
two objects and returns “TRUE’ if they are equal.

ISEQUAL(parameter1, parameter2)

ISEQUAL?

parameter] = = parameter2?

TRUE / FALSE

Fig. 12.4: The generic “ISEQUAL’ function is able to process any
pair of parameters able to respond to the ‘==’ operator.

With a generic function like this, the parameters can be of any type. However, they must
be able to be processed by the function, which in this case means they must be able to use
the ‘==" operator. The clear implication here is that all objects which are liable to be used
by this function must have an overloaded version of the ‘== operator.

This need for all arguments to a generic function to be able to respond to operators holds
true for object methods as well. Consider another generic function ((GREATER_OF’)
which displays the greater of two parameters (Fig. 12.5). The definition of what consti-
tutes ‘greater than’ (i.e. the response to the >’ operator) will be defined by the type of the
parameters actually passed - this is not the responsibility of the function.

GREATER_OF(parameter1, parameter2)

GREATER_OF?

parameterT > parameter2?

Fig. 12.5: The “‘GREATER_OF function displays the greater of two parameters
using the >’ operator and calling a display method.

207

12 Polymorphism by parameter

In a case like this, the generic function can only work if all objects passed to it have not
only an overloaded ‘>’ operator but also a method able to respond to a ‘display’
message. Of course these may be inherited from base classes, and not necessarily specif-
ically defined for each type.

If we do not have a generic function applicable to all classes, then it will be necessary to
have different implementations of a function for each data type in the system - i.e. use
parametric overloading to cater for all possible parameter types. The problem with this
approach is that not only does a separate function have to be defined for each data type
when the program is written, but if any new types are added later then new functions
have to be written for each one. With a generic function, new types can be easily accom-
modated provided they have the appropriate overloaded operators, and/or methods.

Simple parameter overloading however does have uses which do not overlap with
generic functions. For example, it can be used to provide several similar methods in a
single class which in effect give the user options about whether or not to pass parameters
to those methods. This can be particularly useful in overloading the constructor ~ objects
can be created with various sets of parameters depending on the context.

Question 12.3 What potential problems do we need to be aware of when attempting fo
write a generic function?

Because the same function definition will be used with all data types, we have to make sure that all our code is
completely generic so that any parameter types passed fo it can be effectively handled. When creating class defi-
nitions which may be used with generic functions, it is essential that we are aware of any constraints which the
function implementation has in ferms of demanding, for example, that objects can respond to certain operators.

C++ syntax

First, we will examine how simple parametric overloading is applied to non object-
oriented functions. The ‘absolute value’ of a number is the number without a sign. For
example, the absolute value of —45 is 45. Our first example describes an overloaded
‘absoluteValue’ function, with versions for integer and float parameters. Before
demonstrating the overloading of this function, let us first consider the kind of problem
which overloading addresses.

In this example program, there is a function called ‘absoluteValue’ which takes an
integer parameter as a reference (i.e. it changes the value of the variable passed to it
directly). It is called in “main’ by both an integer and a float.

#include <iostream.h>
void absoluteValue(int& value_in)

{
if(value_in < 0)
{
value_in = —value_in;
}
void main()
{
int x =-5;
float y = ~5.5;

absoluteValue(x);
absoluteValue(y);

208

12 Polymorphism by parameter

cout << "Absolute value of x is " << x << endl;
cout << "Absolute value of y is " << y << endl;

}

The following output shows what happens when the program is run:

Absolute value of x is 5
Absolute value of y is =5.5

Clearly, the function has successfully returned the absolute value of the integer, but not
the float. Why is this? In fact the program only runs at all because the compiler tries to
compensate for the use of an inappropriate parameter by coercing the integer argument
parameter into a float (your compiler will probably give you a warning about this when
it type checks the source code). As we have previously discussed, coercion is always a
temporary type conversion using a copy of the data. In this case, we wanted to use ‘pass
by reference’ in the function, but the compiler could only provide a copy (i.e. the para-
meter is passed by value). Therefore the original data was not processed and ‘y’
remained negative.

In this example, the “absoluteValue’ function is overloaded — two versions are provided,
one for integer parameters and one for floats:

void absoluteValue(int& value_in)

{
if(value_in < 0)
{
value_in = —value_in;
}
void absoluteValue(float& value_in)
{
if(value_in < 0)
{
value_in = ~value_in;
}
}

Although the bodies of the functions are identical, they process different data types. If
we run the same program again, we will find that both ‘X" and ‘y’ are successfully
converted to their absolute values:

Absolute value of x is 5

Absolute value of y is 5.5
This time, the call to ‘absoluteValue(x) still uses the int version, but the call to “absolute-
Value(y)’ calls the float version, successfully passing by reference.

In-class overloading - overloading the constructor

We can use this ability to overload a function name (by differences in parameter lists)
inside our classes by overloading methods. This example shows how we might overload
the constructor of the BankAccount class to allow objects to be created with different sets
of parameters.

This modified class definition shows a set of prototypes for overloading the constructor:

class BankAccount

{

private: // or 'protected:, if generalised

209

12 Polymorphism by parameter

int account_number;
char account_holder[20];
float current_balance;
public:
// four overloaded constructors with different parameter lists
BankAccount();
BankAccount(float start_balance);
BankAccount(char* holder_in);
BankAccount(float start_balance, char* holder_in);
// other methods as before...

b
Each of the four versions of the constructor must now be defined. In each case, the
‘current-balance’ and ‘account_holder’ attributes are initialised, either from parameter
arguments or by values assigned inside the constructor body.

The first version takes no parameters, so may be called as if it were the default
constructor, However, it does initialise the two attributes:

BankAccount::BankAccount()

{

current_balance = 0.00;
strepy(account_holder, "UNDEFINED");
}

The second version takes a parameter to set the start balance:

BankAccount::BankAccount(float start_balance)

{

current_balance = start_balance;
strcpy(account_holder, "UNDEFINED");

}

The third version takes a parameter to set the name of the account holder:

BankAccount::BankAccount(char* holder_in)

{
current_balance = 0.00;
strncpy(account_holder, holder_in, 19);
account_holder[19] = "\0';

}

The final version sets both attributes using parameter arguments:

BankAccount::BankAccount(float start_balance, char* holder_in)

{
current_balance = start_balance;
strncpy(account_holder, holder_in, 19);
account_holder[19] = "\0’;

}

In the following program, the four different constructors are called by using different
parameter lists. Note how the parameterised objects in this example are declared in an
array. You may remember that we declared and initialised some simple arrays in
Chapter 3 by separating the initial values by commas. With some compilers we can also
do this when initialising an array of objects, but brackets must be used around the argu-
ment list for each object, even if the list is empty. Alternatively we could create an array
of pointers and instantiate dynamic objects:

#include "bankacct.h"
#include <iostream.h>

210

12 Polymorphism by parameter

void main()
{
// declare an array of four BankAccount objects with their
/I parameters calling the various different constructors
BankAccount account[4] = {
BankAccount(),
BankAccount(100.00),
BankAccount("Mr. Poor"),
BankAccount(1000.00, "Ms. Rich")
}
// display the attribute values of the accounts
cout << "Balances and holders of the accounts are:" << endl;
for(inti=0; i <4; i++)
{
cout << "Balance = £" << account[i].getCurrentBalance();
cout << ", Account holder is " << account[i].getAccountHolder() << endl;

}

The output from this program is:

Balances and holders of the accounts are:
Balance = £0, Account holder is UNDEFINED
Balance = £100, Account holder is UNDEFINED
Balance = £0, Account holder is Mr. Poor
Balance = £1000, Account holder is Ms. Rich

Template functions

Templates are a very powerful tool which we will investigate in more detail when
looking at the implementation of container classes. However, the following is a very
simple example of a template function which is able to process parameters of all data
types which can respond to the ‘> operator.

The syntax for creating a template function is:
template<class type_name> return_type function_name (parameter_list...)

“template’ is a C++ keyword, and the name of the generic class name must be enclosed in
pointed brackets (<...>). The class type name can be anything, but most examples use “T”,
a convention we will follow here. It acts as an alias for any data type actually passed to
the function (whether that data type is int, char, bank account, banana or whatever).

This example is a template definition for an “isGreater’ function which returns ‘true’ or
‘false” depending on whether the first parameter is greater than the second. An enumer-
ated type is used to simulate the ANSI bool type.

/*

TGREATER.H definition of template
isGreater' function

*/

enum bool {false,true} // remove this if your compiler has a bool type

template<class T> bool isGreater(T x, T y)

{
bool is_greater;
if(x >y)
{

is_greater = true;

211

12 Polymorphism by parameter

}

else

{
}

return is_greater;

is_greater = false;

}

The following program tests the template function using integers. Note that the function
call itself is no different to normal function calls.

#include "tgreater.h"
#include <iostream.h>
void main()
{
int X, y;
bool z;
cout << "Enter two integers" << endl;
cin >> X;
cin>>vy;
z = isGreater(x,y);
if(z == true)
{
}
else

{
}

cout << "the first integer is greater than the second” << endl;

cout << "the first integer is less than or equal to the second” << endl;

Example output from two program runs:

Enter two integers

3

6

the first integer is less than or equal to the second

Enter two integers

8

2

the first integer is greater than the second

The point about this type of function is that we can send it pairs of parameter arguments
of any type, even objects of our own user-defined classes. As well as sending it a pair of
integers, for example, we could sent it two objects of the ‘StudentGrade’ class, as
described in Chapter 11. You may recall that one of the exercises for that chapter was to
overload the ‘> operator so that ‘StudentGrade’ objects could respond to it. The
following program uses the template function with objects of this class:

#include "studgrad.h” // modified header

#include "tgreater.h"

#include <iostream.h>

void main()

{

// create two StudentGrade objects
StudentGrade student1;

212

12 Polymorphism by parameter

StudentGrade student2;

// local variables

bool true_or_false;

int temp_grade;

// get the grades from the keyboard

cout << "Enter Maths grade for first student ";
cin >> temp_grade;
student1.setMathsGrade(temp_grade);

cout << "Enter English grade for first student ";
cin >> temp_grade;
studenti.setEnglishGrade(temp_grade);

cout << "Enter Maths grade for second student ";
cin >> temp_grade;
student2.setMathsGrade(temp_grade);

cout << "Enter English grade for second student ";
cin >> temp_grade;
student2.setEnglishGrade(temp_grade);
true_or_false = isgreater(studentl1, student2)

// call the template function and display the result
if(true_or_false == true)

{
cout << "The first student has higher grades" << endl;
}
else
{
cout << "The first student\'s grades are not higher" << endl;
}

}

An example test run of this program follows:

Enter Maths grade for first student 67
Enter English grade for first student 56
Enter Maths grade for second student 43
Enter English grade for second student 40
The first student has higher grades

Summary of key points from this chapter

1.

Parameters can be used to provide polymorphic behaviour by using two different
techniques ~ overloading and genericity (parametric polymorphism).

With overloading, a different implementation of a given function is provided to deal
with each different parameter type.

Object methods (such as the constructor) may be overloaded with different para-
meter lists.

With genericity, a single function or method implementation is used with all para-
meter types.

Generic functions require that all parameter types passed to them are able to respond
to the internal processes of the function such as the use of arithmetic or relational
operators. This means that objects passed as parameters to generic functions may
need to have overloaded operator methods.

Genericity is provided in C++ by “template’ functions.

213

12 Polymorphism by parameter

Exercises

1.

214

Overload a function called ‘getMax’ by providing two implementations. The first
should take as its parameter an array of integers, and return the highest integer in
the array. The second should take an array of chars as a parameter, and return the
highest value which corresponds to a letter in the ASCII table. If no letters are found
in the array, the function should return 0. Assume a size of 10 for both arrays. Test
both functions in “main’.

Using a template, write a generic ‘isGreatest’ function that returns the largest
element in an array. The function will need two parameters: an array (of type “T") and
an integer to pass the size of the array. Test the function with both simple data types
and objects that have the necessary >’ operator (e.g. ‘StudentGrade” or your “string’
class from the Chapter 11 exercises).

Using a template, write a generic ‘meanAverage’ function that returns the average of
an array {(of type ‘T’). Write the function so that it will work for the built in data
types. What difficulties do we face in applying a function like this to objects such as
‘StudentGrade’?

13 Method polymorphism

Overview

In this chapter we will investigate polymorphic object methods in a classification hier-
archy. The static binding of overloaded methods to their appropriate classes at compile
time is discussed, and the syntax for calling inherited methods within overriding
methods is outlined.

Function name overloading

In a monomorphic language, there is always a one to one relationship between a func-
tion name and its implementation. A function such as ‘print’ for example, would have
one and only one possible definition. In an object-oriented system, (where functions are
replaced by object methods) the relationship may be one to many — there may be many
different implementations of a ‘print’ method (Fig. 13.1). The name of the method
becomes a more abstract concept, covering a range of different implementations appro-
priate to different classes of objects. There may be as many different implementations of
this “print’ method as there are classes in the hierarchy, or perhaps more if there is also
‘in-class” polymorphism using overloading.

Monomorphic Function - 1 to 1 Relationship

Function name 1 1 Function
‘print’ Implementation

Polymorphic Methods — 1 to Many Relationship

Method name 1 n Method
‘print’ Implementation

Fig. 13.1: A monomorphic function has only one possible
implementation. A polymorphic method has many.

Overloading method names

When discussing classification hierarchies, we looked at how the methods of a base class
are inherited by derived classes. For example, a method called “print’ defined in the base
class may be called by any object of any derived class. However, this is a rather restric-
tive facility if we can only use the inherited method. Looking again at our ‘Timer” class
which was used as a base class for ‘ExtendedTimer’, it might usefully have a method
called “display” to show some data on the screen. Our derived class ‘ExtendedTimer’
would inherit this method, but it would not necessarily be adequate — how for example

215

13 Method polymorphism

are we to display state data for attributes unique to the derived class which the base class
method is not aware of? We could of course define an entirely separate method with a
different name to display data from ExtendedTimer objects, but this is not a very satis-
factory solution. In fact, object-orientation allows us to override any inherited method by
defining a derived class method with the same name. We also have the facility, if
required, to call any inherited methods within this new method so that the functionality
of the existing implementation can be re-used and extended. We could therefore either
create a ‘display’ method for the ExtendedTimer which completely replaces the inherited
method, or alternatively one that calls the inherited method and then adds some extra
functionality of its own (Fig. 13.2).

Timer
ﬁf? 1

_ - B . /10 \2

e display (9\\ 3)

/ Q 5%/

/ 6

/ o2 yal 12 N
/ 10 2
i old method (9 —o 3

i
1 display’ method

8 4
Ne2S
| - .
. is inherited <

! r -
' i
Y Extended Timer / + new method \{ “
\ &

e A Joﬁn)
display (9‘\?/ 3
8

4 /
765

EXTENDS

<

new method

REPLACES

Fig. 13.2: An inherited method may be used without modification,
but it may also be extended or overridden.

Question 13.1 What are the three ways in which a derived class can implement a poly-
morphic method?

A derived class can implement a polymorphic method by inheriting it unchanged, by replacing it with o different
implementation or by extending it, adding to the existing implementation.

Static binding

When we have ‘inheritance polymorphism’ of this kind, with identically named
methods in different classes, the compiler has to resolve which method is being called by
a particular object, and ‘bind’ the appropriate method to that object. This is done by
identifying the class to which that object belongs, a similar process to that which identi-
fies the classes of objects used with an overloaded operator. In both cases, there may be
more than one interpretation of the operator or method depending on the class of objects
with which it is being used. When this process takes place at compile time it is called

216

13 Method polymorphism

‘static binding’ (also known as “early binding’). When we create external, static or auto-
matic objects in a program, they all have unique identifiers which have a similar role to
simple variable names — the object’s name is associated with a particular area of data
storage. Whenever an object is created, it’s identifier is associated with the name of the
class to which it belongs.

For example, if we have a class called ‘FuelPump’ and we instantiate an object of that
class, that object will have a unique name, such as ‘fuel_pump1’, and any methods called
can be traced to that object’s class. In the following code fragment, a FuelPump object
("fuel_pumpl’) is instantiated and a method (“turnOn’) is called:

FuelPump fuel_pump1;
fuel_pump1.turnOn();

Clearly, the ‘turnOn’ method being called must be that of the FuelPump class, since the
source code states that this is the class of fuel_pumpl. If the method is overloaded by
other classes, then the same clarity of binding applies. Let us assume that there is another
class called “WaterPump’ which also has a method called ‘turnOn’. Our code fragment
might include objects of both classes:

FuelPump fuel_pumpi;
WaterPump water _pump1;
fuel_pump1.turnOn();
water_pump1.turnOn();

The compiler is able to identify the classes to which the two objects belong, and ‘bind’
their respective (overloaded) methods to them. This is what we mean by static binding,
whereby the classes to which objects belong (and therefore the methods that need to be
bound to them) may be identified at compile time. All types of object, including dynamic
objects, are statically bound by default. However, we do have the option with dynamic
objects of implementing ‘dynamic binding’. This will be discussed in the next chapter.

Question 13.2 When does static/early binding of methods take place, and what does it
bind together?

Static binding takes place at compile time. It binds together the class of an object and a method call to that object
to identify which implementation of a {possibly polymorphic) method to use.

Overloaded methods in a classification hierarchy

In the previous example, we looked at two different ‘pump’ classes which used an over-
loaded name for different implementations of a ‘turnOn’ method. It might be reasonable
to assume that, in addition to the behaviours of being turned on and off, there are some
other common aspects of water and fuel pumps which might usefully be generalised
into a common base class. This would probably be an abstract class — one which does not
contain enough detail to instantiate objects in its own right, but allows specialised types
of ‘pump’ to inherit shared characteristics from it. Fig. 13.3 indicates that both
‘FuelPump’ and “WaterPump’ inherit from a common ancestor, an immediate base class
called “Pump’ (Using UML notation for inheritance).

217

13 Method polymorphism

Pump

FuelPump WaterPump

Fig. 13.3: ‘Pump’ is an abstract base class of ‘FuelPump’ and “WaterPump’.

Abstract methods

Our discussion here becomes rather hypothetical, but it may be that the ‘turnOn’
methods of fuel and water pumps are (for whatever technical reason) very different.
Therefore the definitions of the two methods have nothing in common. However, for
reasons of design the ‘Pump’ class should have a ‘turnOn’ method. This is because it is
not good practice to have overloaded method names in separate parts of a class hier-
archy which do not have a common root, since the methods are then applied in an ‘ad
hoc” way with no reference to each other. Whilst this may not seem to be an issue at this
stage, it will become clear when we deal with dynamically bound objects why there
should be this consistency of method names in a classification hierarchy. The question
then arises, what is the implementation of the ‘turnOn’ method in the ‘Pump’ class if it is
not used for common elements of the two other methods? In fact, the method does
nothing functional at all - it exists as a ‘placeholder” for the name of the method so that
all derived classes may implement their own versions of “turnOn’ (Fig. 13.4). It is, to all
intents and purposes, an ‘abstract’ method — one which has no implementation. Such
methods are an important design artifact, so just because a method does nothing, it does
not mean it should not be declared! Abstract methods are common components of an
abstract class.

The “turn on’ method does
nothing in the ‘pump’ class,
turn on but acts as a ‘placeholder’

Zﬁ for the method name

Pump

The ‘turn on’ method
FuefPump WaterPump L ;
is implemented in the
turn on turn on derived classes

Fig. 13.4: The ‘turn on’ method in the ‘Pump’ class
is an abstract method with no implementation.

218

13 Method polymorphism

Question 13.3 What is an abstract method, and what is its role in a classification hierarchy?

An abstract method has no implementation. It exists so that ifs name can be inherited by derived classes. This
creates a consistent interface across all the classes in a hierarchy (inclusion polymorphism).

C++ syntax

Polymorphic methods are easy to implement in C++. We simply duplicate the inherited
method name in a derived class to override the existing implementation. We need to do
this because sometimes we inherit inappropriate or abstract methods.

Overriding inherited methods

You may remember from Chapter 8 a class called ‘ExampleClass” which represented a
single integer, and another class (‘DerivedClass’) which inherited from it and added a
second integer attribute. A slightly modified version of these two classes follows. Note
that the key difference is that the ‘cout’ statements which output the attribute values are
contained in the methods, whereas they previously appeared in ‘main’ — the ‘get’
methods which appeared in the previous incarnation of this example have been replaced
by ‘show’ methods:
#include<iostream.h>

// the base class
Class BaseClass

{
protected:
int x;
public:
void setX(int x_in);
void showX();
b
void BaseClass::setX(int x_in);
{ "
X = x_in:
}
void BaseClass::showX();
{
cout << "base x =" << X << endl;
}

// the derived class
Class DerivedClass : public BaseClass

{
private:
inty;
public:
void setY(int y_in);
void showY();
h
void DerivedClass::setY(int y_in)
{
y=y_in;
void DerivedClass::showY()
{
cout << "Derived y = " << y << endl;
}

219

13 Method polymorphism

As we know, objects of ‘DerivedClass” will have access to the public methods of “Base-
Class’, but inherited methods are not always appropriate to derived class objects.
Consider the base class method ‘showX’. Whether it is used for objects of either the base
or derived class, it will always display “base x =" before the attribute value, even when
the derived class is using the method! In this program, objects of both the base and
derived classes are instantiated and given values for their ‘x” attributes. Then the
‘showX’ method is called for both objects:

void main()

{

// create an instance of each of the classes
BaseClass base_object;
DerivedClass derived_object;

/I set the x value for the base class object
base_object.setX(7);

// set the x value for the derived class object
derived_object.setX(12);

/I display the x value for the both objects
base_object.showX();
derived_object.showX();

}

The output from the program looks like this:
basex =7
basex =12

The correct values are returned, but the messages don’t make sense. Although the
derived class has its own attribute ‘x” which can be set via the inherited method “setX’
without problems, when it uses the inherited method ‘showX’, the base class implemen-
tation, which includes a class-specific message, is called, which reads rather strangely.
To overcome this problem, we can use the power of polymorphism to define a new
‘showX’ method for the derived class which will override the inherited version. Only the
changes to the class definition have been included — other elements would remain
unchanged.

Class DerivedClass

{
public:
void showX();
5
void DerivedClass::showX()

{

}
By redefining a ‘showX’ method in the derived class (which will override the inherited
version), ‘showX’ becomes a polymorphic method - the same method name is used in
more than one class.

If we run our program again, then we get a rather more satisfactory output, as follows:

cout << "derived x = " << X << endl;

basex=7
derived x = 12

220

13 Method polymorphism

This time the (different) methods return appropriate text as well as the correct values.
Since C-++ supports polymorphism, whereby different methods may have the same
name, the compiler decides which one to use depending on the class of the object which
calls it. This means that both the base and derived classes can have methods called
‘showX’, with the appropriate version ‘bound’ by the compiler, which identifies the
classes of the objects. In the program, the message ‘showX’ is sent to objects of both the
base and derived classes, and they respond in different, class-specific ways. Note that we
did not have to alter the code of the program although the internal implementation
details of ‘DerivedClass’ had been altered. This demonstrates one of the key strengths of
object-orientation — as long as the interfaces of our classes remain consistent, we are free
to alter their implementation, including changing which polymorphic method is being
called by a particular statement.

With the first version of our ‘DerivedClass’, the following line called the ‘showX’
method of the base class:

derived_object.showX();

After we had re-written the class definition, the same line called the ‘showX” method of
the derived class.

Defining abstract methods

In the previous example, we were overriding an existing method inherited from the base
class. In both example program runs, the compiler was able to ‘bind” a useable method to
the object calling it, even when the specific method was not defined in the class to which
the object belonged. This is because if the method being invoked is not found in the class
of a particular object, then the compiler will look for a method of the same name in the
superclass(es) from which it derives. It will check in the immediate parent class first, and
if necessary continue searching up the hierarchy until either a method is found or there
are no more superclasses, in which case the compiler will flag an error. However, if the
method is “abstract’ in the base class, then there will not be any implementation of that
method inherited.

An abstract method exists purely for the purpose of being overridden by methods in
derived classes, so in contrast to other methods which may be used throughout a class’s
descendants, abstract methods must be overridden by all inheriting classes to provide a
useful behaviour. What then can we put into the implementation of an abstract method
if all the functionality is devolved to derived class versions of the method? As we will
see in the next chapter, it is possible to declare ‘pure’ abstract methods, but only in
specific circumstances. A practical alternative approach therefore is simply to leave the
body of the method empty as follows:

class Pump

{

public:
void turnOn() {}

b

221

13 Method polymorphism

This means that objects of class ‘Pump’ have a ‘turnOn” method, even though it has no
functionality. In circumstances where we do not have any appropriate behaviour for a
base class method, this will at least compile without problem.

Extending inherited methods

In the ‘DerivedClass’ example, we applied polymorphism to override (replace) an inherited
method definition. We may also if we wish simply extend the definition of an inherited
method by calling it in a derived class method and adding extra implementation details.

The class definition which follows shows a simple class ("ASCIIChar’) which represents
a single ASCII character as an object. It has one attribute (‘character’) and two methods,
‘getChar” and ‘showChar’. (The attribute is ‘protected’ to allow it to be accessed by the
methods of derived classes).

The ‘getChar” method takes an integer parameter, and stores any value which corre-
sponds to a letter in the ASCII table. Otherwise it defaults to store a space. The ‘show-
Char’ method displays the appropriate ASCII character on screen by using “cout’, which
automatically converts char data types to their appropriate characters.

-

ASCICHAR.H definition of ASCIIChar class

f

#include <iostream.h> // for cin and cout

class ASCliChar

protected:
char character;

public:
void getChar(int char_number);
void showChar();

h

void ASCliChar::getChar(int char_number)

{
/I these ranges are the ASCII codes for upper and lower case letters
if((char_number >= 65 && char_number <= 90)
Il (char_number >= 97 && char_number <= 122))

{
character = char_number;
}
else
{
character = 32;
}

}
void ASCIlIChar::showChar()

/1 if 'char_number' is not in a letter range, store a space
cout << "Character is " << character << endl;

}
A very simple program using an object of this class follows:

#include "ascichar.h"
void main()

ASCIIChar a_char;
a_char.getChar(97);
/1 97 is the ASCII code for 'a’

222

13 Method polymorphism

a_char.showChar();

}

Running this program will display the single character ‘a’.

Extending the ‘getChar’ method in a derived class

For this example, we will be specialising the ASCIIChar class. The derived class is going
to be called ‘UpperCaseChar’ since it has the more specific role of converting any stored
letters into upper case. As it stands at present, the ‘getChar’ method (which will be
inherited by the derived class) checks if the parameter argument represents a valid char-
acter code. If it does, then the ‘character’ attribute is set to that value. Otherwise the
attribute is set to the value 32 (space).

To make this method store only upper case characters, we could simply replace it
entirely, but we still need to filter out inappropriate characters, so it seems foolish to
abandon it entirely. Fortunately, C++ provides us with the syntax to extend it by
including its functionality in a derived class method. This is done using the scope reso-
lution operator (::) to call the inherited method as follows:

classname :: methodname(parameter_list...)

The reason for including the class name is that the call otherwise appears recursive —
calling ‘getChar’ inside a method called ‘getChar’ will recursively and endlessly call
itself unless a different class name is provided.

In the ‘getChar’ method for the derived class, we will first call the existing base class
‘getChar’ method. Then we will add the case conversion routine. Note how the scope

resolution operator is used for the call to the base class method:
/*
UPPRCASE.H definition of
UpperCaseChar class
*/
#include "ascichar.h"
class UpperCaseChar : public ASCliChar
{
public:
void getChar(int char_in);
b
void UpperCaseChar::getChar(int char_in)
{
// the base class method is called
ASCIIChar :: getChar(char_in);
/I if 'character' is not a space, it is a letter
if(character != 32)

// 97 to 122 are lower case letters
if(character >= 97)

// the upper and lower case ranges are 32 apart in the table
character -= 32;

223

13 Method polymorphism

The following program tests objects of the two classes:

#include "upprcase.h”

void main()
/I create objects
ASCIIChar either_case;
UpperCaseChar upper_case;
// pass both of them the value 97 (ASCII 'a')
either_case.getChar(97);
upper_case.getChar(97);
// show the attribute value
either_case.showChar();
upper_case.showChar();

}
The output is as follows:

Character is a
Character is A

A Practical Example

The previous examples demonstrate the key elements of the syntax, but do not perform
particularly realistic functions. A slightly more useful example might be a class which
models desktop computers in a university inventory system. Such a system might
record, for example, the type, current configuration and location of all the PCs owned by
the university. Let us assume that the existing ‘Computer’ class has the following attrib-
utes and methods:

Computer

make

model

mouse

hard drive size
CD ROM speed
location

show details
change details

Rather than having separate methods to return or update the state values of individual
attributes, there is a single method which shows all details and another which allows
some to be updated. There will also be a constructor which will set the initial values of all
attributes. To keep the example simple, the attributes are either character strings or
numeric values representing various states; the ‘mouse’ attribute for example might
contain 0 for no mouse, 2 for a 2 button mouse and 3 for a 3 button mouse. Clearly a
larger set of possible values would be appropriate in a realistic system. The class
definition is:

/*

COMPUTER.H definition of the 'Computer' class
*/
class Computer

{

protected:

224

13 Method polymorphism

char make[20];
char model[20];
int mouse;
float hard_drive_size;
int cdrom_speed;
char location[20];
public:
Computer();
void showDetails();
void changeDetails();
b
‘showDetails” here is a simple screen display of state attributes, while ‘changeDetails’
allows appropriate attributes to be updated via a simple screen interface. It would not be
appropriate to alter the ‘make’ and ‘model’ attributes after instantiation, but aspects of
the machine configuration or location might need to be updated. The constructor
initialises all attributes from keyboard input, and in this example takes advantage of the
‘changeDetails’ method to avoid duplication of code. The method definitions might look

something like this (very crude for simplicity’s sake):
/*
COMPUTER.CPP method definitions for the 'Computer’ class
*/
#include "computer.h"
#include <iostream.h>
// the constructor acquires 'lifetime' attributes from the keyboard
// (attributes that will not change for the lifetime of the machine)
// as well as those that may be changed
Computer::Computer()
{
cout << "Enter make of computer ";
cin >> make;
cout << "Enter model ";
¢in >> model;
// this is a bit of a short cut to avoid code repetition
changeDetails();

// the 'showDetails' method displays all the attribute values

void Computer::showDetails()

{
cout << endl << "CURRENT MACHINE DETAILS" << end;
cout << "Make: " << make << end];
cout << "Model: " << model << endl;

if(lmouse)
{
cout << "no mouse attached" << endl;
}
else
{
cout << "A " << mouse << " button mouse is attached" << endl;
}

cout << "Hard drive is " << hard_drive_size << " Mb" << endﬁ
if(lcdrom_speed)

{

cout << "No CD-ROM" << endl;
}
else

225

13 Method polymorphism

{
}

cout << "Currently located in room: " << location << endl;

cout << "With " << cdrom_speed << " speed CD-ROM" << endl;

}

// the 'changeDetails' method only changes the state of atiributes
// that are not set for the lifetime of the machine. to keep the code
// short and simple it requires input of all attributes, which is

// rather clumsy. a menu driven interface would be better

void Computer :: changeDetails()

{
cout << endl << "UPDATING MACHINE DETAILS" << endl;
cout << "Enter number of mouse buttons (or 0 for no mouse): ";
cin >> mouse;
cout << "Enter size of hard drive (in Gb): *;
cin >> hard_drive_size;
cout << "Enter speed of CD-ROM (or 0 for no CD-ROM): ";
cin >> cdrom_speed,;
cout << "Enter room number of new location: ";
cin >> location;

}

To demonstrate the class, the following program instantiates a ‘Computer” object, shows
its initial details, changes them (rather laboriously!), then displays the amended data.
/*
COMPMAIN.CPP test program for 'Computer' class
*
#include "computer.h"
void main()

{

// instantiate a '‘Computer' object
Computer computeri;

/I display the details set by the constructor
computeri.showDetails();

// change some attributes
computer1.changeDetails();

// display the modified details
computeri.showDetails();

}

A sample test run output follows:

Enter make of computer Raipaq

Enter model P180

UPDATING MACHINE DETAILS

Enter number of mouse buttons (or 0 for no mouse): 0
Enter size of hard drive (in Gb): 1.2

Enter speed of CD-ROM (or 0 for no CD-ROM): 8
Enter room number of new location: 101
CURRENT MACHINE DETAILS

Make: Ratpaq

Model: P180

no mouse attached

Hard drive is 1.2 Mb

With 8 speed CD-ROM

Currently located in room: 101

226

13 Method polymorphism

UPDATING MACHINE DETAILS

Enter number of mouse buttons (or 0 for no mouse): 3
Enter size of hard drive (in Gb): 2

Enter speed of CD-ROM (or 0 for no CD-ROM): 12
Enter room number of new location: 102
CURRENT MACHINE DETAILS

Make: Ratpaq

Model: P180

A 3 button mouse is attached

Hard drive is 2 Mb

With 12 speed CD-ROM

Currently located in room: 102

Specialising the ‘Computer’ class

If we assume that the class described above is used in an existing application, then it will
be suitable for creating objects applicable to all computers in the system. However, what
happens if we acquire new machines which have additional characteristics not catered
for in our current system? For example, what if we need to connect a number of
machines to the Internet, and we wish to incorporate into the system the details of these
machines, such as the type of web browser that is available, and the IP address? Such
details would not be appropriate to machines not connected, so we would not want to
change the existing class, indeed we may not have access to the implementation details
of the class in order to do so.

To specialise from the existing ‘Computer” class we could inherit its existing function-
ality into a new class, and then add the new attributes and extend the methods. The
following class (‘WebComputer’) inherits from ‘Computer” and re-declares the two
methods so that new (polymorphic) versions can be defined.

class WebComputer : public Computer

{
private:
char browser[20];
char ip_address[20];
public:
WebComputer();
void showDetails();
void changeDetails();
h

In a case such as this, the existing methods can be extended by including them in the
methods of the derived class. In both cases, all the existing functionality is applicable to
objects of the ‘WebComputer” class, but additional implementation detail is necessary.

Summary of key points from this chapter

1. Polymorphism allows us to have many versions of a method, each implementation
defined in a different class.

2. The ability to redefine a method name in a derived class allows us to tailor inherited
methods for use with a derived class object. Inappropriate inherited methods may be
overridden or extended by the derived class.

227

13 Method polymorphism

3. The compiler uses ‘static binding’ to identify the particular version of a polymorphic

method when it is called. It is able to identify the class of an object at compile time by
the constructor call.

If a method in a base class is completely overridden by derived class methods, then
that method may have no implementation and is therefore abstract. Abstract classes
(which are not specialised enough to instantiate objects in their own right) often have
abstract methods.

In C++ we can override an inherited method by defining another method with the
same name in a derived class. In the derived class method we may also call the base
class method and extend its existing functionality.

Exercises

1.

228

Implement the ‘Pump” hierarchy in Fig. 13.4. The ‘turnOn’ methods should display
appropriate messages in the derived classes, such as ‘pumping water” and ‘pumping
fuel’. Test the methods in ‘main’.

Implement the constructor and the two methods declared for WebComputer by
extending the inherited versions. Use the appropriate syntax to call the inherited
methods within the derived class methods. Test you WebComputer class. What is the
side effect of the call to “changeDetails’ in the base class constructor?

14 Run-time polymorphism

Overview

This chapter is about polymorphism in the context of dynamic objects, and how dynamic
(late) binding is used to resolve the calling of methods from a hierarchy of dynamic
objects. In C++, the uses of virtual methods and base class pointers to ensure dynamic
binding are explained, and the syntax for creating pure virtual functions for abstract
methods is demonstrated.

Predictable and unpredictable objects

In Chapter 5 we compared two general types of object; those which have predictable
identities, quantities and lifetimes and those which are unpredictable in terms of these
properties. We illustrated this distinction by making a comparison between oil pumps
and raindrops — oil pumps are easily counted and named, but raindrops are not. We are
able to predict the persistence of objects such as oil pumps, but cannot predict the persis-
tence of an individual raindrop. Since the identity of a raindrop depends entirely on the
space which it occupies at a particular time, this can only be identified at ‘rain-time’. In a
program, some objects are identifiable at compile time, whereas others can only be iden-
tified at run time. In addition, there are occasions when we cannot even predict the class
of an object until run time. When dynamic objects have unpredictable classes, we can
send them messages using run time polymorphism.

Sending messages to objects of unpredictable classes

When we know the class of an object, then we know how it will respond to a particular
message. Even if we do not know which object of a class might receive that message at
run time, we still know which method is being called since all objects of a class share the
same ‘pool’ of methods. All raindrops have the same response to the message ‘fall’ for
example.

However, we may have a situation where we are sending a message to an unpredictable
collection of objects. If we send the message ‘fall’ to a number of unpredictable objects of
different classes, then we are unable to predict which behaviours will actually result. If
the sky contains a number of objects receiving the message ‘fall’, then we may find a
range of responses to that messages depending on the classes of those objects (Fig. 14.1).
Raindrops, snowflakes and various other objects in the airspace fall in rather different
ways (though like all truly polymorphic behaviours, they are semantically similar).

229

14 Run-time polymorphism

Fig. 14.1: Unpredictable objects may have a range
of responses to a single message such as ‘fall’.

Binding polymorphic methods

We discussed in the previous chapter the application of method polymorphism to a class
hierarchy, (‘inheritance polymorphism’) whereby a method name can be overloaded
within the hierarchy. It is possible for a method name to be duplicated for every separate
class, and for the compiler to ‘bind” the appropriate method to the object which is calling
it. However, the ability of the compiler to statically bind a particular method at compile
time depends on the class of an object being known when the program is being
compiled. This ability to predict the class of an object is always the case when dealing
with external, static or automatic objects, since they have unique identifiers in the source
code. The compiler is able to identify the class of any object of these types by the call to
the constructor, since this always refers to the class name. In a previous example we
referred to a class called "FuelPump’ and the instantiation of an object of that class with a
unique name, (‘fuel_pumpl’), In an example code fragment, a FuelPump object was
instantiated and a method (‘turnOn’) called:

FuelPump fuel_pump1;
fuel_pump1.turnOn();

Clearly, the ‘turnOn()" method being called must be that of the FuelPump class, since the
source code states that this is the class of “fuel_pump1’. If the method is overloaded by
other classes, then the same clarity of binding applies. In the previous chapter, the Water-
Pump class also has a ‘turnOn’ method, but it is clear from the source code which
method is being called by each object, because their classes are clearly identifiable from
the constructor calls.

FuelPump fuel_pump1;
WaterPump water_pump1;
fuel_pump1.turnOn();
water_pump1.turnOn();

230

14 Run-time polymorphism

Even if we use pointers to dynamic objects, then in the examples we have seen so far the
class of the object is predictable at compile time. A dynamic raindrop for example is
clearly a member of the ‘RainDrop” class, and therefore uses whatever methods are
defined for that class:

RainDrop* rain_drop = new RainDrop;
rain_drop -> fall();

rain_drop -> hitGround();

delete rain_drop;

If we were to rewrite the FuelPump/WaterPump example using dynamic objects, then
the two methods can still be statically bound at compile time:

FuelPump* fuel_pump1 = new FuelPump;
WaterPump* water_pump1 = hew WaterPump;
fuel_pump1 -> turnOn();

water_pump1 -> turnOn();

It is clear from the above examples that objects of all types can have their methods stati-
cally bound. In what circumstances, then, can we not predict the class of a dynamic
object until run time?

Dynamic binding

When the class of an object cannot be identified at compile time, static (or ‘early’)
binding of methods (and overloaded operators) cannot take place. The identification of
which polymorphic methods are being called by the object must then be deferred until
run time — this is known as ‘dynamic binding’ (or ‘late binding’). How is it possible, then,
to create objects whose classes cannot be identified until run time? In C++, this is
possible through the use of base class pointers (static identifiers) to reference dynamic
objects of derived classes. To illustrate this, let us return to the abstract base class "Pump’
which we introduced in the previous chapter (Fig. 14.2).

The ‘turn on’ method does
nothing in the ‘pump’ class,
turn on but acts as a ‘placeholder’

Zﬁ for the method name

Pump

The "t n’ method
FuelPump WaterPump ,he turm on m L
is implemented in the
turn on turn on derived classes

Fig. 14.2: The abstract ‘Pump’ class, introduced in Chapter 13.
231

14 Run-time polymorphism

Question 14.1 When do we need fo resort to ‘dynamic’ (or ‘late’) binding as opposed to
‘static’ (or ‘early’) binding?

When the class of an object cannot be identified at compile time, then the methods of its class cannot be bound
until run time.

The role of the abstract base class

The base class in this hierarchy represents the common characteristics of both fuel and
water pumps, but is not specialised enough to represent an object in its own right. We
also suggested that the ‘turnOn’ method in the base class was purely abstract, acting
simply as a placeholder for the name of the method. What, then, is the purpose of an
abstract class with abstract methods? In essence, a base class such as ‘Pump’ is the mech-
anism which allows us to implement dynamic binding. Messages may be passed via a
pointer of the base class to objects of other derived classes at run time. In other words, all
we know at compile time is that some kind of "Pump’ object will be instantiated, but we
will not know until run time whether that object will be a ‘FuelPump’ or a ‘WaterPump’.
The unspecified ‘Pump’ object will however need to receive messages at run time, so the
base class pointer must be able to reference the polymorphic method name. If ‘Pump’
did not have a ‘turnOn” method, then it would be unable to receive that message on
behalf of instantiated ‘WaterPump’ or ‘FuelPump’ objects at run time.

Base class pointers to derived class objects

All the dynamic objects we have instantiated so far have been referenced by pointers of
their own class. However, we do not have to use pointers which belong to the same class
as the objects which they reference — as we indicated above, it is also possible to reference
objects of any derived or descendant class via a pointer of a base class. To illustrate this,
we can return to the code fragment showing the ‘turnOn’ method being called for
dynamic objects of the classes derived from ‘Pump’. In the original version, the
‘FuelPump” and “WaterPump’ objects are referenced specifically by pointers of their own
classes.

FuelPump* fuel_pump1 = new FuelPump;
WaterPump* water_pump1 = new WaterPump;
fuel_pump1 -> turnOn();

water_pump1 -> turnOn();

It is, however, equally possible to reference both of these objects by pointers of the base
class. This is illustrated by the following code fragment:

Pump* a_pump;

int pump_type;

cout << "Enter 1 for a fuel pump, 2 for a water pump *;
cin >> pump_type;

if(pump_type == 1)

{

a_pump = new FuelPump;

}

else

{

232

14 Rundime polymorphism

a_pump = new WaterPump;

}

a_pump -> turnOn();

In this case, a pointer of the base class is being used to reference an object which at run
time may belong to either of the derived classes. The ‘turnOn” method is also called via
this base class pointer, but the message ‘turnOn’ in fact has more than one possible inter-
pretation depending on the class of the object receiving it. We therefore have an inter-
esting problem — if ‘a_pump’ is a pointer of the ‘Pump’ class, then statically binding its
‘turnOn’ method (i.e. “turnOn’ as defined in the ‘Pump’ class) will not give us the
desired behaviour, because the base class method has no implementation. In cases such
as this, we can call the correct method at run time by not binding it at compile time. We
can instruct the compiler to wait until the method call is executed at run time before
attempting to bind the appropriate method. At that point, the class of the object will be
known because the constructor will have been executed. The deferring of binding until
the class of an object is known at run time is known as ‘dynamic binding’, and allows us
to implement run time polymorphism.

Question 14.2 What method names must be declared in the base class if the methods of
derived classes are to be dynamically bound at run time?

A derived class method can only be bound at run time if the base class pointer is able to respond to that method
name (this is because of the type checking which ensures that a method has fo exist in the class which calls i).
Therefore all methods of any derived class must be declared in the base class if dynamic binding is to take place.

C++ syntax

To implement run time polymorphism in C++, we use the keyword “virtual” to denote
those methods which may be dynamically bound at run time.

For the following examples, we will use objects of classes derived from an abstract base
class called ‘FlyingMachine’ (Fig. 14.3)

Flying Machine

show name
{abstract}
Aeroplane Helicopter
show name show name

Fig. 14.3: ‘FlyingMachine’ is an abstract base class for ‘Aeroplane’ and ‘Helicopter’.

‘FlyingMachine’ acts as the base class for two derived classes, ‘Aeroplane” and ‘Heli-
copter’. For the purposes of this example, the classes have no attributes, but each one has
a single ‘showName’ method which allows it to display its name on the screen.

233

14 Run-time polymorphism

The classes may be defined as follows:

#include <iostream.h>
class FlyingMachine

{
public:
void showName();
I
class Helicopter : public FlyingMachine

{
public:
void showName();
b
class Aeroplane : public FlyingMachine

{
public:
void showName();
h
void FlyingMachine::showName()

{

cout << "Flying Machine" << endl;

void Helicopter::showName()

{

cout << "Helicopter" << endi;

void Aeroplane::showName()

{
}

As our class definitions currently stand, we are able to instantiate dynamic objects of all
three classes in various ways. The objects may be instantiated using pointers of their
own classes, so that, for example, we could use a pointer of class “Helicopter’ to create
helicopter objects, and a pointer of class ‘Aeroplane’ to create aeroplane objects.
However, we may also create objects of either of these classes using a pointer (‘flyer’) of
the base class (‘FlyingMachine’) as illustrated in Fig. 14.4.

cout << "Aeroplane" << endl;

FlyingMachine* flyer;

flyer = new Helicopter;

flyer = new Aeroplane;

=

Fig. 14.4: a pointer of the base class is able to reference,
instantiate and destroy objects of any derived class.

234

14 Run-time polymorphism

The following program shows this being done:

#include "flying.h"
void main()

{
FlyingMachine* flyer;
flyer = new Helicopter;
flyer -> showName();
delete flyer;
flyer = new Aeroplane;
flyer -> showName();
delete flyer; -

}
In this program, objects of the derived classes are successfully instantiated and
destroyed via a pointer of the base class. However, the output from the program is this:

Flying Machine

Flying Machine
Although we have created objects of the derived classes, the message returned from the
objects is from the method of the base class. Why does this happen? It is because the
compiler has statically bound the ‘showName’ method at compile time, when the iden-
tity of the objects is not known. Therefore the compiler binds the method which belongs
to the class of the pointer, which is not necessarily the same as the class of the object at
run time. After all, a FlyingMachine pointer could point to any of a range of objects at
run time from any derived class. (Fig. 14.5) This is totally unpredictable when the
compiler is statically binding object methods, so it can only bind the base class method.

S
= ? -
N

Fig. 14.5: A pointer may reference objects of many classes at run time,
but the compiler cannot predict which they will be at compile time.

The “virtual’ keyword

By default, the compiler will always statically bind a method to the class of the pointer.
However, we can force the compiler not to bind the method at compile time, but to allow

235

14 Runtime polymorphism

dynamic binding of the object method at run time when the identity of the object being
referenced is known. The mechanism for achieving this is simple - it is the ‘virtual’
keyword.

Whenever a method is declared as “virtual’, then the compiler will not statically bind it at
compile time — it will be dynamically bound at run time. In this version of the class decla-
rations, the ‘showName’ method has been declared to be ‘virtual’ in all three classes. In
fact, as long as the base class method is declared ‘virtual’, then all the other polymorphic
versions of the method will automatically be virtual too.

class FlyingMachine
{
public:
virtual void showName();
b
class Helicopter : public FlyingMachine

{
public:
virtual void showName();
b
class Aeroplane : public FlyingMachine

{
public:
virtual void showName();
1
If we run the previous program again, the output demonstrates that the appropriate
methods are bound to the objects at run time:

Helicopter

Aeroplane
The first call to ‘showName’ via the ‘FlyingMachine’ pointer (‘flyer’) has bound the
method of the ‘Helicopter’ class, but the second has bound the method of the ‘Aero-
plane’ class.

The virtual destructor

There is another aspect to dynamic binding which is important, namely the behaviour of
the destructor. The constructor, although it uses a pointer of the base class, explicitly
instantiates an object of a named derived class, reserving memory appropriate for an
object of that class. The constructor call for the ‘Helicopter” object for example clearly
states the class of the object:

flyer = new Helicopter;
However, the (default) destructor being used in the example is called as follows:

delete flyer;
What size of object does this destroy? in fact it only deletes that part of the object which
has been derived from the base class, not those parts which have been constructed from
derived classes, because the destructor will, by default, have been statically bound to the
class of the pointer. To ensure that the whole object is destroyed, the destructor too must

be dynamically bound, meaning that we have to declare a virtual destructor for each
class in the hierarchy, even if that destructor has no extra functionality.

236

14 Run-time polymorphism

A virtual destructor for each class should therefore be added as follows:

class FlyingMachine
{
public:
virtual ~FlyingMachine() {}
virtual void showName();
b
class Helicopter : public FlyingMachine
{
public:
virtual ~Helicopter() {}
virtual void showName();
h
class Aeroplane : public FlyingMachine
{
public:
virtual ~Aeroplane() {}
virtual void showName();
h
Since in this case the destructors have no bodies, they are declared in line as empty
braces.

Question 14.3 What does the ‘virtual’ keyword instruct the compiler to do?

The “virtual” keyword insiructs the compiler fo defer the binding of a polymorphic method call to a particular
implementation until run fime.

Declaring abstract methods as ‘pure virtual functions’

In the last chapter, we looked at abstract methods which have no implementation. This is
often the case when the methods of derived classes are dynamically bound, and the
implementations of the method are defined in derived classes. Abstract methods may be
declared to be ‘pure virtual functions” in C++ — any virtual function (i.e. one which is
dynamically bound) can be made abstract by the following syntax:

virtual method_name() = 0;
This means that no implementation is provided for the method in this class, and has two
implications:
1. The method cannot be invoked by objects of derived classes unless an overriding
implementation is specifically provided.
2. No objects of the class containing the abstract method may be instantiated.

If we take our ‘Pump’ class as an example, the “turnOn’ method would be declared as a
pure virtual function as follows:

class Pump

{

public:
virtual void turnOn() = 0;

b

237

14 Runtime polymorphism

Any class which contains one or more methods declared in this way automatically
becomes an abstract class, regardless of whether or not other methods have specific
implementations.

Pure virtual functions in the ‘FlyingMachine’ class

Our example ‘FlyingMachine’ class is clearly an abstract class, since it is not specialised
enough to instantiate objects in its own right. Once we have made its ‘showName’
method virtual, that can become an abstract method. We might therefore make it a pure
virtual function:

class FlyingMachine

{
public:

virtual void showName() = 0;
b

Although this method has no implementation, its role is to allow the polymorphic
methods of derived classes to be dynamically bound. Like ‘turnOn’ in the ‘Pump’ class,
it exists purely as a means of passing messages to unpredictable objects at run time. If
‘FlyingMachine’ did not have this virtual ‘showName’ method, then the expression
‘flyer -> showName()’ could not be compiled, since it would attempt to call a method
which did not exist in the class of the pointer. It is essential that any methods which are
to be dynamically bound are declared in the base class used for the pointer.

A larger example

The program which follows uses the classes ‘FlyingMachine’, “Helicopter” and “Aero-
plane’ to show the arrivals and departures at an airfield. The airfield is also an object
which contains the various aircraft, with hangars modelled by an array of base class
pointers (Fig. 14.6).

Flying Machine * Airfield
fabstract) <>
show name control traffic
arrival
% departure
Aeroplane Helicopter
show name show name

Fig. 14.6: ‘Airfield’ is an aggregation of ‘FlyingMachine’ objects
(aggregation shown here in UML notation using the diamond symbol).

These are the classes and method definitions:

#include <iostream.h>
class FlyingMachine

{
public:

238

14 Run-ime polymorphism

virtual ~FlyingMachine() {}
virtual void showName() = 0;
h
class Helicopter : public FlyingMachine
{
public:
// note that the keyword ‘virtual’ need not be used before the derived
/l class methods. any method which overrides a virtual method in a
// base class is virtual by default
~Helicopter() {}
void showName();

h
class Aeroplane : public FlyingMachine
{
public:
~Aeroplane() {}
void showName();
b
void Helicopter::showName()
{
cout << "Helicopter";
}
void Aeroplane::showName()
{
cout << "Aeroplane";
}

/I the airfield class allows flying machines to arrive and depart,
// storing them in hangars
class Airfield
{
private:
FlyingMachine* flyer;
FlyingMachine* hangar[10];
public:
Airfield();
~Airfield();
void controlTraffic();
void arrival();
void departure();
b
// the constructor initialises pointers in the hangar array to NULL
/I it then callls the controlTraffic method
Airfield::Airfield()

{
for(inti = 0; i < 10; i++)
{
hangar[i] = NULL;
controlTraffic();
}

// the destructor does any necessary cleanup
Airfield::~Airfield()
{
for(inti=0; i < 10; i++)
{
if(hangar[i] = NULL)
{

delete hangarfi];

239

14 Rundime polymorphism

}
}
if(flyer 1= NULL)
{

delete flyer;
}

// controlTraffic provides a user interface. The menu allows the user
// to select arrival, departure or quit
void Airfield::controlTraffic()

{ .
int machine_type;
int option = 0;
do
{

. cout << "Enter 1 for arrival, 2 for departure, 3 to quit "
cin >> option;
if(option == 1)
{
cout << "Enter 1 for Helicopter, 2 for Aeroplane *;
cin >> machine_type;
// the switch statement instantiates an object of the chosen type
/1 or directs the pointer to NULL if the choice is invalid
switch(machine_type)

case 1: flyer = new Helicopter; break;
case 2: flyer = new Aeroplane; break;
default: flyer = NULL;

}

if(flyer 1= NULL)

arrival();

}
}
if(option == 2)
departure();
} while(option != 3);
}

// arrival assigns the flying machine to the next available hangar
void Airfield::arrival()

{
inti=0, found = 0;
do
if(hangarfi] == NULL)
{
hangarli}] = flyer;
flyer -> showName();
cout << " assigned to hangar " << i << endl;
found = 1;
!
i++;
} while(found == 0 && i < 10);
if(found == 0)

{

cout << "No more hangars" << endl;

240

14 Run-ime polymorphism

}
}

// departure deletes the object in the chosen hangar
void Airfield::departure()
{
int found = 0;
// display all the occupied hangars
for(inti=0; i < 10; i++)

{
if(hangar[i] != NULL)
{
hangar[i] -> showName();
cout << " in hangar " << i << endl;
found = 1;
}
}
if(found == 0)
{
cout << "All hangars empty" << endl;
}
else
{
/I select which machine is to depart
int choice;
cout << "Enter hangar number to empty ;
cin >> choice;
if(hangarfchoice] != NULL && choice >=0 && choice <10)
delete hangar[choice];
hangar[choice] = NULL;
}
else
{
cout << "Invalid entry" << endl;
}
}

}

/I 'main simply calls the constructor of an airfield object. all other
/I processing is done by object methods
void main()

Airfield airstrip1;
}
A sample test run follows. Notice how dynamic objects of both derived types are refer-
enced by the array of base class pointers which represents the hangars. Each object is also
able to respond to the ‘showName’ method with its own name because the method has
been dynamically bound:

Enter 1 for arrival, 2 for departure, 3 to quit 1
Enter 1 for Helicopter, 2 for Aeroplane 2
Aeroplane assigned to hangar 0

Enter 1 for arrival, 2 for departure, 3 to quit 1
Enter 1 for Helicopter, 2 for Aeroplane 1
Helicopter assigned to hangar 1

Enter 1 for arrival, 2 for departure, 3 to quit 1

241

14 Runtime polymorphism

Enter 1 for Helicopter, 2 for Aeroplane 2
Aeroplane assigned to hangar 2

Enter 1 for arrival, 2 for departure, 3 to quit 2
Aeroplane in hangar 0

Helicopter in hangar 1

Aeroplane in hangar 2

Enter hangar number to empty 1

Enter 1 for arrival, 2 for departure, 3 to quit 2
Aeroplane in hangar 0

Aeroplane in hangar 2

Enter hangar number to empty O

Enter 1 for arrival, 2 for departure, 3 to quit 3

Summary of key points from this chapter

1. When the classes of objects are unpredictable, then their behaviours will also be
unpredictable.

2. Objects whose classes can be identified at compile time have their methods statically
bound. Those whose classes cannot be predicted must be dynamically bound at run
time.

3. A pointer of the base class can be used to instantiate, reference and destroy objects of
any derived classes.

4. In order for methods to be dynamically bound, they must be declared ‘virtual’. This
includes the destructor (though not the constructor). Abstract object methods may be
declared as ‘pure virtual functions’ in C++ using the ‘= 0 syntax.

5. A class with one or more pure virtual functions cannot be instantiated — i.e. it is a
pure abstract class.

6. For a method to be dynamically bound to objects of derived classes in a hierarchy, it
must be a member of the base class, whether or not the base class method is abstract.

Exercises

1. Rewrite your ‘Pump’ classes from Chapter 13, exercise 1, so that the “turnOn’ method
is abstract in the base class and can be dynamically bound. Test your classes with the
code from pages 232-3.

2. A toy manufacturer makes cuddly toys of four types in three sizes. Some toys are

242

teddy bears and others are bunny rabbits. Teddy bears are dressed as either engine
drivers or gardeners, while bunnies are dressed as clowns or bank managers.
Teddies make a growling noise and go ‘pad pad pad’ when they walk, whereas
bunnies make a thumping noise and move along going “bounce, bounce, bounce’.
All toys can make a moving along noise, say what job they do and tell you their size
by making a noise the appropriate number of times. For example, when asked for its
size a size one clown will say ‘thump’, but a size three gardener will say “grrr, grrr,
grrr’.

Model the classes as described above in a hierarchy, the highest level of which
should be the base class ‘CuddlyToy’. There should be an intermediate level of

14 Run-ime polymorphism

classes “Teddy” and ‘Bunny’, and at the lowest level classes of ‘EngineDriver’,
‘Gardener’, “Clown” and ‘BankManager’.

Instantiate objects of these classes dynamically using base class pointers, setting the
size of the toys via a parameter to their constructors. Remember to pass the ‘size’
parameter to the base class when coding the derived class constructors (see pages
129-130). Demonstrate that the toys can move along, tell us what size they are and
say what job they do using dynamically bound, virtual methods.

In a given academic year, students register as either full time or part time. Full time
students pay a flat fee for a complete year’s course, but the fee for part time students
is based on how many units they choose to take, multiplied by the unit fee. Write a
‘Student” base class with a ‘name’ attribute and an enumerated type to indicate
whether or not a student has paid their fees. The class should have a ‘payFees’
method and an abstract ‘getFeesDue’ method. Add derived classes for full time and
part time students, implementing polymorphic ‘getFeesDue’ methods in these
classes.

Provide “get’ and ‘set’ methods in the base class for the student’s name, and a
constructor that ensures that fees are initially recorded as unpaid. Use the derived
class constructors to set the course fee (in the case of full time students) or the unit
fee and the number of units (in the case of part time students).

Test your classes with a program that creates a group of students (using an array of
‘Student” pointers to dynamically instantiate derived class objects) and displays the
fees due from each student. Ensure that your ‘payFees’ method is tested.

243

15 cContainer classes

Part 1 Container types, data structures and simple containers

Overview

This part discusses container classes and describes the various types of container that
may be required for different types of object collection. The containers available in the
standard library are discussed, and C++ syntax examples show how simple container

classes may be implemented by encapsulating arrays or linked lists of objects.

Containers as a form of aggregation

In Chapter 9 we introduced the idea of aggregation, which includes a number of object

relationships. These may be of three general types:
1. fixed aggregations:
an object is composed of a fixed set of component objects.
2. variable aggregations:
an object is composed of a variable set of component objects.
3. containers:

An object exists in its own right, but is able to contain other objects.

You may remember that Fig. 9.5 used a car to illustrate the difference between ‘contain-
ment’ (fixed or variable aggregations where objects are components of other objects) and
‘containers’ (where one object holds collections of other objects). The engine compart-
ment of a car has a containment relationship with the engine, which is an essential
component of the enclosing object. In contrast, the boot exists regardless of its contents,
but is able to contain various collections of other objects. You may also recall that one of

the characteristics of a container is that it can persist even if it contains nothing.

What is a container?

There are containers all around us, and without them life would be very difficult, since
containers allow us to collect and organise numbers of other objects. Fig. 15.1 shows a

few containers of various types.

Fig. 15.1: Some examples of containers that can hold collections of other objects.

244

15 Container classes

A bus, for example, contains passengers, a coal truck contains coal, an envelope may
contain a letter and a diskette may contain data files, perhaps with directories providing
another level of aggregation. Just from these examples, we can see that there are differ-
ences in the characteristics of different containers. Some containers have limitations on
the type of objects they may contain, so that a coal truck might only ever contain coal,
whereas an envelope may contain a wide range of items provided they are of a suitable
size and weight (letters, photographs, cheques etc.) Some containers have limited mech-
anisms for adding and removing objects; people must enter a bus through a door in a
particular sequence, which may be dictated by ticket numbers, whereas coal is loaded in
a rather more informal manner! The organisation of objects within the container may
vary too. For example, the organisation of files on a diskette must be very strict for us to
be able to add files, remove them and access the data on the disk, while a pile of groceries
in a shopping trolley has no particular order or control over access. Another aspect of
containers is constraints on the number of objects they can hold. For some containers the
maximum number of objects is fixed; buses have a fixed passenger capacity and
diskettes have a fixed size of data storage. In contrast, a bin liner always has enough

available expansion for just one more soggy tea bag!

Question 15.1 What characteristics of a container can be identified for a CD case?

A CD case contains objects of a single class in a particular sequence and has a fixed maximum storage capacity.

It allows random access to the objects (CDs) in the container.

Containers in software
In this chapter, we will look at some containers that may be implemented in software.
These range from the simplest types, such as containers for a fixed number of objects of
a single class, to more complex structures that may contain dynamic collections of

objects of many classes.

'
oy
'

/ Container

1
)
)
'
'
'
'
[
v
Vo
[
[
vt

Contained
objects

Fig. 15.2: A container is an object of a container class. It contains other objects.

245

15 Container classes

A container in an object-oriented program is usually instantiated as an object of a
container class. A container class object encapsulates inside it the mechanism for
containing other objects, and providing the necessary behaviour for adding, removing
and accessing the objects it contains (Fig. 15.2). Incidentally, the use of a “cloud” to repre-
sent an object, found in a number of illustrations in this chapter, is adapted from the
design notation of Grady Booch [Booch, 1994].

Like all classes, a container class gives us the opportunity for reuse, so that container
objects (being fairly generic in nature) can be usefully instantiated in many programs.
This frees us from having to recreate complex data structures in every program requiring
the management of a collection of objects.

We have already used simple containers in some of our example programs. In Chapter 6,
we used both a single pointer and an array of pointers to represent ‘garages’, in a sense
modelling a real life container. In Chapter 14 we used an array of “FlyingMachine’
pointers to contain aircraft of various derived classes. In this case the array modelled a
set of hangars; again reflecting a real life container. In fact an array is a very useful way
of containing collections of objects, since it is simple to manage and allows direct access
to its elements. However, it also has certain characteristics that may not always be appro-
priate. For example, it is always of a fixed size and the data is indexed in a fixed
sequence. Although we have used data structures to contain other objects, we have not
so far modelled the containers themselves as objects. This may be done by encapsulating
the data structures inside the definitions of container classes.

Container types

There are many different types of container, and container class libraries provided with
most object-oriented languages have a range of container classes with various behav-
iours and internal implementations. In the past, C++ compilers from different vendors
had different libraries, some based on inheritance and some based on genericity. The
standard C++ library uses genericity to implement the classes, a technique that will be
described in the second part of this chapter.

If a library class is available, it is usually better to re-use it. We can, however, build our
own container classes quite simply, which can be a useful exercise in understanding how
containers work.

Although container class libraries can vary between languages and compilers, they will
all provide a similar set of classes to the standard C++ library. Typically we will find
general data structures such as vectors (arrays) and lists (with their implementations
encapsulated behind a simple interface), along with classes providing specific access
protocols (e.g. how objects can be put into and removed from the collection). Template
based libraries usually include two general types of container class; the underlying data
structures such as arrays and lists, and the more specialised types that are built on them
such as stacks and queues. The following table indicates the main container classes in the
standard C++ library.

246

15 Container classes

Container Ordering Random access? | Indexable?
vector by index yes yes

list by insertion yes no

stack by insertion no no

queue by insertion no no

priority queue | by size no no

deque by index and insertion | yes yes

set sorted yes no

multiset ‘sorted yes no

map by sorted key yes yes, by data type
multimap by sorted key yes yes, by data type

Container classes like these are abstract concepts that are implemented using traditional
data structures such as arrays and lists. Once they are encapsulated into classes,
however, we do not have to be aware of their implementation details. There is also a lot
of overlap between the different containers in the table because some definitions are
purely to do with structure, but others constrain access methods. The stack for example,
which has strict access rules, may be built on either a vector or a deque, both of which
have very open access.

Ordered and unordered collections

An ordered collection is a very general type of container which could be modelled using
a range of internal implementations. Since it is ordered, there simply has to be some
mechanism for referencing objects in the container in the required order, usually the
order in which the objects were originally added, but sometimes by other criteria such as
sorting by key or size. It is worth bearing in mind that certain operations are possible on
ordered collections that are not possible on unordered collections; we can access the first
or last elements for example, operations that would clearly not apply to unordered
collections. All the containers in the standard library have some kind of ordering, even
where the type of container does not necessarily demand it.

If an ordered collection is sorted, then we have to ensure that any objects put into the
collection are in fact sortable, perhaps by being able to respond to an overloaded > or
‘<’ operator.

Direct and indirect containers

A direct container contains the actual objects, whereas an indirect container simply holds
pointers to the objects. Indirect containers are the more useful type because they allow us
to use polymorphism to manage different types of object in the same container. A single
object may also be referenced by more than one indirect container (i.e. it can be in more
than one container at the same time).

Question 15.2 What must underlie the public interface of any container objecte

In order for a container to work, some kind of data structure that implements ifs behaviour must lie behind its inter-
face. Typically, some kind of vector or list may be used.

247

15 Container classes

The vector:

The terms “vector’ and ‘array’ are often used synonymously because a vector is simply
an array that has only one dimension. An array, in contrast, can have multiple rows and
columns but all the examples in this book have only one dimension. Since we have
already used the array to contain objects in previous examples, it seems a good place to
start. However, we have not so far seen the encapsulation of an array into a class.

Arrays have many advantages; being instances of a data structure built in to the
compiler they are easily declared, easily indexed (by an integer subscript) and relatively
easy to handle in a program. Since the indexing is done independently of the contained
objects duplicate objects can be contained. The only major drawback of the array is that
it must be of a fixed size. As we know, an array can only be declared with a given size
and cannot be dynamically resized once declared. It can of course be dynamically allo-
cated at run time, but once it has been created its size is fixed. The only way of resizing
an array at run time is to create a new array of the required size and then copy into it all
the data from the original array.

In an object-oriented system, arrays are often modelled as classes rather than simply
used as data structures. This encapsulates the mechanisms which directly manipulate
the array behind a simpler object interface. The vector class allows us to create objects
that behave like arrays, but can also dynamically resize themselves and have integral
bounds checking to ensure that we do not use elements which have not been properly
allocated.

The list:

After the vector, the list is the most fundamental data structure. Unlike an array, it does
not have to be declared with a fixed size, because it is only ever as large as the collection
of objects it contains. Because a list is maintained by chaining the objects sequentially
together there is fast access to the first and last elements but accessing objects elsewhere
in the list can be inefficient, unlike the indexed vector.

The stack:

The stack is a classic data structure that in the standard library is based on either a vector
or a deque. What defines a stack is not so much its internal structure but its access
methods. A stack is a ‘LIFQ’ (‘Last In First Out’) structure, which means that objects are
put into a stack object in order, and only retrievable from it in reverse order (Fig. 15.3).
Standard operations for a stack are ‘push’ (add an item to the top of the stack) and “pop’
(remove the item on the top of the stack.)

248

15 Container classes

B

Stack Queue

(LIFO) (FIFO)

Out

Fig. 15.3: A stack is a “Last In First Out’ structure. In
contrast, a queue is a ‘First In First Out’ structure.

The queue:

Like the stack, the queue is one of the most well known structures (also illustrated in Fig.
15.3). Its implementation in the library is either based on a list or a deque. In contrast to
the stack, its access method is ‘FIFQ’ (‘First In First Out’).

The deque:

The double ended queue, usually known as a deque (pronounced (‘deck’) is a cross
between a queue and a stack because we can add and retrieve objects at both ends (Fig.
15.4). The implementation of the deque in the standard library also allows random
access to the elements in the container, which is not the case in the usual definition of a

deque.
In l {_’Out In Out

Deque Priority

Queue
In j LOut

Fig. 15.4: A deque has characteristics of both a stack and a queue
in that objects can be added and retrieved at either end. A priority
queue puts the largest object to the head of the queue.

The priority queue:

The priority queue allows objects to be prioritised, so that it is a collection ordered by
priority rather than by insertion sequence or sorting. The first object out of the queue is

249

15 Container classes

not necessarily the first one added, but the one that has the highest priority. In the stan-
dard library this is the ‘largest’ element (Fig. 15.4), which assumes that the contained
objects can respond to the appropriate operator. Its implementation is based on either a
vector or a deque.

The set:

The key aspect of a set is that there can be no duplicates in it. One way of defining a set
is to say that it will discard duplicate additions (without regarding this as an error), so
that one might be used for example to collect the uniquely occurring words in a docu-
ment. Rumbaugh suggests that the set is the best way to implement a multiple
unordered association. Although the general concept of a set does not imply ordering of
the objects, the standard C++ implementation does in fact order the objects by sorting.

The multiset:

A multiset (sometimes known as a ‘bag’) is a fairly general type of container, because it
has a very open access mechanism. Although it is based on a set, it allows duplicates.

The map:

A map (sometimes known as a ‘dictionary’, a “table’ or an “associative array’) provides a
way of accessing objects by using other objects as the key. For example, we might use a
map to create an interview appointment system, with time objects used as keys to objects
representing interviewees.

The multimap:

Like the map, the multimap is based on a table of keys and values. It differs, however, in
allowing duplicate keys to be contained.

Question 15.3 What type of container would be appropriate to model a ‘stack’ of aircraft
waiting to land at an airport?

A “stack’ of aircraft is not actually a stack! In general terms it is a ordered collection that does not contain dupli-
cates. It is in practice o queve (the first aircraft in is the first one out], but has some aspects of a priority queue, in
that if necessary cerfain aircraft can ‘queue jump’, perhaps if they are short of fuel.

The use of containers

The primary value of containers in an object-oriented program is that they give us
control over collections of objects, particularly dynamic objects that are unpredictable in
terms of their persistence. When we want to model objects in a varying collection at run
time, we need a simple mechanism for creating, accessing and destroying them without
having to explicitly deal with the programming algorithms that allow dynamic objects to
be handled. A container class takes responsibility for managing our collections of
objects, and all we have to do is to use the methods provided for the container. A typical
container might have the kind of methods shown below, allowing us to add objects to
the container, find a particular object and remove an object. It is also useful to know if the
container is empty or not, and be able to empty (‘flush’) the container. This type of
container class interface is fairly generic; all kinds of object collections can undergo these
operations.

250

15 Container classes

Container

add object
find object
flush

is empty?
remove object

Iterators

We have talked about different types of object method in previous chapters; selector
methods (to tell us about the state of objects), modifier methods (that let us change the
state of objects) constructors and destructors (to create and destroy objects). With
container classes, we also need what are known as ‘iterator’ methods, that allow us to
iterate through the contents of a container in order to access the objects inside it. Many
iterator methods rely on all the contained objects being able to respond polymorphically
to the same messages. For example, we might have a container of graphics objects that
are to be displayed on the screen using a ‘draw’ method. An iterator method could
address all the objects in the container in turn, sending the necessary message (Fig. 15.5).

=
BR3¢

Fig. 15.5: an iterator method will reference the objects in the container. In

this case, a collection of graphics objects are all sent the message “draw’.

Other iterators might destroy all the objects in a container, or scan all the objects looking
for a particular one.

Iterator objects

One problem with adding iterator methods to a container class is that they are often not
intrinsic behaviours of the container itself, but application specific requirements. Take a
method called ‘view objects’” for example, that displays some information from the
objects on the screen. This is not really a fundamental operation of a container, but some-
thing that we may wish to do to the objects in that container. The builder of the original
container cannot anticipate in advance how the objects need to be viewed. Many other
operations might be necessary on a particular collection of objects, and it would be

251

15 Container classes

impossible (and unreasonable) to attempt to build all these in as methods of the
container class.

To overcome this problem, there are two possible solutions. One is to use what are
known as “callback’ functions, where the container class has methods that are given the
address of user defined functions that process objects passed to them. That way, all the
container class method has to do is to send each object in turn to the external function.

The second solution (as used in the standard library) is to have separate iterator objects
that can be associated with a particular container and have the necessary methods to
iterate through the container and access its elements. The programmer is then able to
write application specific methods to process the objects returned by the iterator. The
methods of iterator classes are very simple, typically the four described by [Gamma
et al, p.257]:

Iterator

first

next

is done
current item

‘first’ moves to the first item in the container and ‘next’ to the next item. ‘is done” tells us
when we have finished iterating through the container and ‘current item” returns the
object currently referenced by the iterator.

One advantage of iterator objects is that more that one iterator can be used with a single
container. In Fig. 15.6, two iterator objects are shown accessing different parts of a single

container at the same time.

Container

Fig. 15.6: More than one iterator object can be used with a single container object.

C++ Syntax

There are many ways of implementing containers in C++, so the examples which follow
serve only as an introduction to the design and implementation of container classes. You
may also wish to explore the standard library or any vendor-specific container class
libraries which you may have access to.

The simplest container is, of course, the array, and we have seen the array used to
contain objects in several example programs. What we have not done is to encapsulate
these arrays into container classes; only the simple data structure has been used. The
example which follows contrasts the use of an array as a container in its own right with

252

15 Container classes

an array-based container object. In the previous chapter, we modelled a set of aircraft
hangars as an array of pointers of class ‘FlyingMachine’:

FlyingMachine* hangar{10];
This meant that every time it was necessary to interface with the hangars (to put an
aircraft in, report on hangar status or take an aircraft out) the array elements had to be

directly addressed. Take this code fragment for example, which shows the contents of
the hangars:

for(inti=0;i<10; i++)
if(hangar]i] != NULL)
{

hangar[i] -> showName();
cout << " in hangar " << i << endl;

found =1;
}
}
if(found == 0)
{
cout << "All hangars empty" << endl;
}

Because the array is a data structure rather than a class, we have no encapsulation of its
functionality behind a simple interface. If, however, we were to model the hangars as a
container object, then we could hide this kind of implementation inside object methods.
We might have a method called “showContents’ to perform this behaviour:

hangars.showContents();

Being able to call this type of method certainly makes the program easier to follow,
because the implementation detail need not concern us. We can still model the hangars
using the same array and the same algorithms as we used in the program in Chapter 14,
but we can encapsulate them inside a class which might look something like this:

class Hangar
{
private:
FlyingMachine* machines{10];
int aircraft_count;
public:
Hangar();
~Hangar();
void showContents();
void aircraftin(FlyingMachine* machine_in);
FlyingMachine* aircraftOut();
int aircraftCount();
int hangarsEmpty();
b
By encapsulating the manipulation of the array behind the object interface, the rest of the
program becomes much simpler. It also allows us to pass other responsibilities to the
object such as keeping a count of how many aircraft are present. By modelling what was
previously a simple data structure as a real world object, we can get a clearer idea of

where responsibilities lie and in which classes methods should reside.

253

15 Container classes

If the airport object includes an aggregated object of class ‘Hangar” (with all its encapsu-
lated behaviour), the control tower is then able to interrogate the interface of the hangar
container for the required behaviours, for example:

cout << hangars.aircraftCount() << " aircraft in hangars” << endi;

Although we still have to provide the implementation for the methods of ‘Hangar’, the
separation of these methods from other classes makes the system more modular and
flexible.

Generic confainers

You may have noticed that the public interface of the "Hangar” class bears a close resem-
blance to the generic methods that appeared earlier on our ‘Container” class diagram.
This might lead us to question whether we really need to re-implement an application
specific container such as ‘Hanger’ (that will be of no use in any other application) or
whether we can use a more generic implementation that can be used in other programs.
To model the hangers we need an ordered, indexed container; perhaps we should build
ourselves a ‘vector’ class or, better still, use an existing class in a library. We can still have
a ‘Hangar”’ class for application specific behaviour, but instead of encapsulating a simple
array data structure, it would be better to base most of its operations on a ‘vector” object
aggregated inside the class. The advantages of this approach over using a simple data
structure would include automatic bounds checking, dynamic resizing and predefined
iterators.

Linked lists of objects

As we have stated, an array is not the most flexible mechanism for implementing
containers because resizing arrays can be complex and inefficient. A better approach in
cases where the numbers of objects fluctuate widely is the linked list, which allows the
size of the container to vary automatically as objects are added and removed. This is
because it does not store objects in a fixed physical sequence (though the objects in a list
still have a logical sequence.) A list is implemented using pointers; one pointer (the head
pointer) references the first object in the list (in our example this will always be the most
recently added,) and then each object points to the next one in the list. Fig. 15.7 shows the
structure of a simple list of objects. In this case, it is a singly linked list, which means that
each object can only point to one other object (the next in the list, or NULL if there are no
more objects).

Head Pointer

V))-C)

Fig. 15.7: A singly linked list of objects requires a head pointer to reference the object
at the head of the list. The remaining objects then reference each other sequentially.

A doubly linked list is where each object has two pointers to reference the objects on
either side of it, and two pointers (the ‘head’ and “tail’ pointers) are used to reference the

254

15 Container classes

two ends of the list (Fig. 15.8). This makes certain operations such as deletions easier to
accomplish.

Head Pointer Tail Pointer

T Ty
- s o

Fig. 15.8: A doubly linked list can be traversed in both
directions, since each object points to both its neighbours,
and both ends of the list are referenced by pointers.

The next example program demonstrates the creation of a singly linked list of objects of
a single class. This is what is known as an “intrusive’ list because the objects themselves
have to point to each other, and therefore must contain a pointer of their own class. At
this stage, we are not modelling a container class, simply demonstrating the implemen-
tation mechanisms for putting objects into lists. The program itself simply instantiates
five objects and adds them to the list in turn, iterating through the list at the end to
display their attribute values.

lterating through a list of objects

In order to iterate through a linked list of objects, each object must be accessed via the
object which is pointing to it, starting with the head pointer and terminating when a
NULL pointer is reached. The following code fragment from ‘main’ shows how this is

done:
for(temp = head_pointer; temp != NULL; temp = temp -> getPreviousObject())
{
temp -> showX();
}

‘temp’ is a pointer of the class which scans through the list of objects, starting with the
head pointer (“temp = head_pointer’). The ‘while’ condition is “temp != NULL/, so that
the loop will continue as long as there is a valid pointer in the current object. At the end
of each loop, “temp’ is redirected to the object referenced by the current object’s pointer
(‘temp = temp -> getPreviousObject()’)

Example program - a linked list of objects

The header file contains the definition of a simple ‘ListObject” class (and methods) that
can be used to build an intrusive linked list.

/*

LISTOBJ.H This class is able to create an intrusive linked list.
Obijects are referenced by pointers contained in other objects.

*/

#include <iostream.h>

class ListObject

{

private:

255

15 Container classes

// the only attribute is a single integer
int x;

// each object will contain a pointer to the next object in the list
ListObject* next_object;

public:
void setX(int x_in);
int getX();
void setNextObject(ListObject* next);
ListObject* getNextObject();

b

/] 'setX' sets the integer attribute value

void ListObject::setX(int x_in)

{

}

// 'getX' returns the attribute
int ListObject::getX()

{

X = x_in;

return x;

/1 'setNextObject' directs the pointer to the next object in the list
void ListObject::setNextObject(ListObject* next)

{

next_object = next;

// 'getNextObject' tells us which is the next object in the list
ListObject* ListObject::getNextObject()

{

}

This example program builds a list of five objects of the ‘ListObject’ class and then
iterates through it:

/*

return next_object;

LISTOBJ.CPP This program creates a linked list of objects
*/
#include "listobj.h"
void main()
{
// declare 'head_pointer' of type ListObject which initially points to NULL
// when the program runs, ‘head_pointer' will always point to the most recently
// added object in the list
ListObject* head_pointer= NULL;
/I another pointer, 'temp' is declared to instantiate objects
// before they are added to the list
ListObject* temp;
// 5 objects are created using a 'for' loop
for(inti=1;i<=5; i++)
{
temp = new ListObject;
// the pointer in the object is set to whatever 'head_pointer' is
// currently pointing at
temp -> setNextObject(head_pointer);
// the object is given an attribute vaiue (just to prove it works!)
temp -> setX(i);
/I before 'temp' is used again, ‘head_pointer' is re-directed to point
// at the last created object

256

15 Container classes

head_pointer = temp;
}
// at this point, 'head_pointer' is pointing to the fifth object that
// was created. The first four can only be located by the pointers
// inside other objects. the following iteration reads back through the
// linked list of pointers until it reaches the last object pointer
// (which is NULL)
for(temp = head_pointer; temp != NULL; temp = temp -> getNextObjeci())
{

}

cout << "Value of object is " << temp -> getX() << endl;

}

The output from this program will be the attribute values of the five objects, seen in
reverse order of instantiation as the pointer scans from the last object in the list back to
the first as follows:

Value of objectis = 5
Value of object is = 4
Value of object is = 3
Value of object is = 2
Value of object is = 1

Creating a container class

A container encapsulates its implementation behind its object methods. To build a
container class we need to hide the data structures used to manage the collection of
objects. It is also preferable if being in a container does not impinge more than necessary
on the contained objects. In the previous example we used an intrusive list, which meant
that each object had to be responsible for pointing to the next object in the list. We can
improve on this approach by creating a non-intrusive list, in which another type of object
(a “link” object) encapsulated inside the container takes over the responsibility for
maintaining the integrity of the pointers that make up the list. Fig. 15.9 shows how a
non-intrusive list is organised; the objects themselves do not contain pointers to other
objects, but are all referenced by objects of a ‘link’ class. It is these links which point to
each other, and the head pointer always references the last link in the list, not the last
contained object.

Head Pointer

—p NULL

(1 9&
v
e
()

Fig. 15.9: A non-intrusive list. ‘Link’ objects take over the responsibility
of organising the list from the objects in the container.

257

15 Container classes

There are three classes used in the container class example program:

1. Date — The class of the objects that are to be put into the container. Unlike the
‘ListObject’ example, this class does not contain any implementation code for
building the linked list.

2. Link - The class of the links which implement the list used inside the container. Each
link contains two pointers, one to point to the next link in the list, and another to
reference an object of the “Date” class.

3. Container — The container class, which is able to contain objects of class ‘Date” and
manage them using ‘Link’ objects.

Adding a new object to a container

Since containers generally use pointers to reference the contained objects, adding a new
object means passing a pointer to the container via a method. We can do this by instanti-
ating an object outside the container and then passing it as a parameter to a suitable
method. This example (similar to the example program in the next listing) assumes a
container called ‘date_list” with a method called ‘addObject’ that takes as a parameter a
pointer of the class ‘Date’. We might add a new object like this:

Date* temp;

temp = new Date;

date_list.addObject(temp);
This creates an object that can be referenced both inside the container and outside. It
might even be referenced by more than one container. However, it may be unnecessary
to have the object visible outside the container, if the container has ownership of the
object (i.e. if the object has no need to exist except inside the container). In such cases, a
more appropriate way to instantiate the object is to use ‘new’ inside the argument list of
the method itself, as follows:

date_list.addObject(new Date);

This will create the object as part of the method call, and remove the need for another
pointer outside the container. In the example program, this is how new ‘Date’ objects are
added to the list based container. In the example, the Date constructor takes data from
the keyboard as a shortcut, but in a more realistic system we might pass parameters to
the constructor.

Removing an object from a list

A container that only allows us to add objects is rather limited, so our container also has
a method to remove objects. Unfortunately, removing objects from a singly linked list is
not very easy. If we simply destroy the object, then any object that it references will be
lost, along with any other objects further down the list. Therefore the removal of an
object requires some redirection of pointers. One way of approaching it is to handle the
removal of the object at the head of the list differently to the removal of objects further
along the list. This is because removing the object referenced by the head pointer is rela-
tively simple. Fig. 15.10 indicates how this is done. The first step is to direct a pointer to
the last object in the list, and then redirect the head pointer to the next object. Then the
object referenced by the temporary pointer can be easily deleted or returned.

258

15 Container classes

Head Pointer

The head pointer is redirected

O

delete

temp

Fig. 15.10: Removing the object at the head of the list involves redirecting
the head pointer and referencing the object using a temporary pointer.

Although the figure shows an object being deleted, the same technique applies for the
deletion of links in a non-intrusive list. The link in such a list always needs to be deleted
to recover memory. However, the object may not be removed. Containers sometimes
have ‘ownership’ of the objects they contain, which means that they can destroy objects
removed from the container. However, in other cases the container does not own the
objects and simply returns them once they are removed. We need to be aware that some-
times both link and object are destroyed, but sometimes only the link is destroyed.

Removing objects embedded somewhere in the middle of a list is more complex. This is
because once we have located the object to be removed, we also need to identify the
previous object and redirect its pointer past the removed object. Therefore we need to
iterate through the list using two pointers (Fig. 15.11), one to find the unwanted object,
and the other to redirect the pointer of the previous object.

Head Pointer The internal pointer of the object referenced by
the second pointer (‘temp2’) is redirected past
the object to be removed

d —> | NULL
/ \delete/return

temp2 templ

Fig. 15.11: Removing an object from the middle of a singly
linked list can be done using two pointers.

We can see from the code that this is not very easy to express in C++. A doubly linked list
provides an easier means of removing an object, because that object references the
objects on either side of it. This means that both the adjacent objects’” pointers can be
accessed and redirected. Of course the trade off is that it is a little harder to implement a
doubly linked list in the first place.

259

15 Container classes

Example program: a lisi-based container class

This example program shows how a container class may be implemented based on a
non-intrusive singly linked list. The example is based on a container of "Date’ objects
using the very simple class shown here. The state of the objects is set using keyboard
input in the constructor. There is also a method to display the object, and an overloaded
equality operator (==) that is used to locate a given date in the container:

/*

DATE.H the definition of the 'Date’ class

the '‘Date’ class has three integer attributes to represent day, month and year

*/
class Date
{
private:

int day;

int month;

int year;
public:

Date();

void showDate();

int operator == (const Date& date);
b
/*

DATE.CPPthe method definitions for the 'Date’ class
*/

#inciude "date.h"
#include <iostream.h>
// the 'Date' constructor gets its values from the keyboard
Date::Date()
{
cout << "Enter day ";
cin >> day;
cout << "Enter month ";
cin >> month;
cout << "Enter year ";
cin >> year;
}
// 'showDate' displays the date
void Date::showDate()

{
}

// the equality operator
int Date::operator == (const Date& date)

cout << "Date is: " << day << "/" << month << "/ << year << endl;

{
if(day == date.day && month == date.month && year == date.year)
{
return 1;
}
else
{
return 0;
}
}

260

15 Container classes

This is the ‘Link’ class, which only exists as part of the implementation of the container.
Its only behaviours are to direct pointers to other ‘Link” objects and to ‘Date” objects in

order to link the list together:
/*
LINK.HThe class definition for the 'Link' class
*/
#include "date.h"
// the 'Link’ class allows us to create a non-intrusive list, because it takes
// over responsibility for pointing to both an object and the next link in
// ihe list
class Link
{
// pointers to the next link in the list and an object of the 'Date’ class
Link* next_link;
Date* current_object;
public:
Link();
void setNextLink(Link* previous);
Link* getNextLink();
void setCurrentObject(Date* current);
Date* getCurrentObject();
I
/*
LINK.CPP The method definitions for the 'Link’ class
*/
#include <stdlib.h> // for NULL
#include "link.h"
/ the constructor initialises the pointers safely to NULL
Link::Link()

next_link = NULL;
current_object = NULL;

}

// 'setNextLink' directs the link pointer to the next link in the list
void Link::setNextLink(Link* next)
{

next_link = next;

// 'getNexiLink' returns a pointer to the next link in the list
Link* Link::getNextLink()
{

}

// 'setCurrentObject’ directs the object pointer to a 'Date’
void Link::setCurrentObject(Date* current) -

{

current_object = current;

return next_link;

// 'getCurrentObject’ returns a pointer to the referenced date
Date* Link::getCurrentObject()
{

}

The “List’ class is the container. As part of its implementation it contains a ‘Link’ object as
the head pointer.

return current_object;

261

15 Container classes

262

/*
LIST.H The class definition of the 'List’ class
*/
// the 'List' class uses link objects to control the list objects it
// contains
#include "link.h"
class List
{
private:
// the head pointer is to a 'Link’ that will itself reference a 'Date’
Link* head_pointer;
public: '
List();
void addObject(Date* object_in);
void showContents();
Date* removeObject(Date* look_for);

b
/*
LIST.CPP The class definition of the 'List' class
The 'List' class uses link objects to control the objects it
contains
*/

#include <iostream.h>
#include "list.h"
/Il the constructor initialises the head pointer to NULL
List::Lis()
{
head_pointer = NULL;

// 'addObject' adds a new object to the list

void List::addObject(Date* object_in)

{

/Il declare a new Link to reference the added object
Link* temp_link = new Link;

// the 'next_link' pointer in the new link object is set to whatever

// the head pointer is currently pointing at.
temp_link -> setNextLink(head_pointer);

// its 'Date' pointer is directed to the newly added object.
temp_link -> setCurrentObject(object_in);

// 'head_pointer' is re-directed to point at the last created link object
head_pointer = temp_link;

}

// a simple iterator that shows the contents of the container

void List::showContents()

for(Link* temp_link = head_pointer; temp_link != NULL;
temp_link = temp_link -> getNextLink())
{

}

temp_link -> getCurrentObject() -> showDate();

}

// removing an item from a singly linked list is a messy business...
// like many containers, this one identifies an object using its overloaded
// equality operator (==)
Date* List::removeObject(Date* look_for)
{
// declare a local pointer to return the found object
Date* date_found;

15 Container classes

// set a flag so we can check if a match was found

int found = 0;
// first of all, is there anything in the container? If not, abort the
// search

if(head_pointer == NULL)

found = 0;
}
// if there is, try to match the parameter object with one in the container
else
{

// declare a local 'Link' pointer to iterate through the array
Link* temp_link;
// see if it is the last object which is to be removed. The overloaded
/I equality operator is used to locate the object. The parameter date
// and the pointer returned from the container both have to be de-referenced
//'in order to compare the objects
if(*(head_pointer -> getCurrentObject()) == *look_for)

// direct the temporary pointer to the first Link
temp_link = head_pointer;
// move the head pointer along the list, past the object to be removed
head_pointer = head_pointer -> getNextLink();
// point the local Date pointer to the found object
date_found = temp_link -> getCurrentObject();
// delete the Link object that is no longer required
delete temp_link;
// set the flag to indicate a successful search
found = 1;

I/ if the first object is not the one we want, we had better look through
// the list. we need a second pointer to follow along one link behind
// this is used to bypass the object being removed
else
{
// direct the second pointer at the (already checked) head pointer
Link* temp?2 = head_pointer;
// start iterating from the second link onwards
for(temp_link = head_pointer -> getNextLink();
temp_link != NULL;
temp_link = temp_link -> getNextLink())

/1 if a match is found
if(*(temp_link -> getCurrentObject()) == *look_for)

// direct the previous link to the one after the found object
temp2 -> setNextLink(temp_link -> getNextLink());
// point the local Date pointer to the found object
date_found = temp_link -> getCurrentObject();
// remove the unwanted link
delete temp_link;
// move the iterating pointer past the deleted link
temp_link = temp2;
// set the flag to indicate a successful find operation

found = 1;
}
else
{

263

15 Container classes

// if the current object was not matched, move the trailing pointer along
/I before the end of the 'for' loop
temp2 = temp_link;

}
}

}

}
// return a pointer to the found object, which may be NULL if no match was found

if(Ifound)
{

return NULL;
}
else
{

return date_found;
}

}
The test program (‘LISTMAIN.CPP’) test the methods of the ‘List’ class by adding,
displaying and removing ‘Date” objects
/*
LISTMAIN.CPP Program to test the 'List class
i
#include "list.h"
#include <iostream.h>
// 'main’ simply demonstrates the methods 'addObject’, 'showContents'
/l and 'removeObject’
void main()
{
// create a 'List' object
List date_list;
/! local variable for menu choice
int choice;
/1 iterate until choice is 4 (exit)
do
{
cout << "Enter 1 to add, 2 to show all, 3 to remove, 4 to exit ";
cin >> choice;
switch(choice)

// add a new date object (the constructor will take data from the keyboard)
case 1 : date_list.addObject(new Date); break;
// display the dates in the list
case 2 : date_list.showContents(); break;
// remove a given date from the list
case 3 : cout << "Enter details of object to remove"” << endi;
Date* temp = new Date;
// ‘returned' will either be NULL or the same date as 'temp’, depending on
// the return value of 'removeObject’
Date* returned = date_list.removeObiject(temp);
if(returned)
{
// display and then destroy the date returned
cout << "The following date has been removed: ;
returned -> showDate();
delete returned;

264

15 Container classes

else

{

cout << "no match found" << endl;

} // end of 'switch'
} while(choice != 4);
}
A sample test run:
Enter 1 to add, 2 to show all, 3 to remove, 4 to exit 1
Enter day 6
Enter month 6
Enter year 1944
Enter 1 to add, 2 to show all, 3 to remove, 4 to exit 1
Enter day 31
Enter month 12
Enter year 1999
Enter 1 to add, 2 to show all, 3 to remove, 4 to exit 1
Enter day 11
Enter month 11
Enter year 1918
Enter 1 to add, 2 to show all, 3 to remove, 4 to exit 2
11/11/1918
31/12/1999
6/6/1944
Enter 1 to add, 2 to show all, 3 to remove, 4 to exit 3
Enter details of object to remove
Enter day 2
Enter month 2
Enter year 22
no match found
Enter 1 to add, 2 to show all, 3 to remove, 4 to exit 3
Enter details of object to remove
Enter day 31
Enter month 12
Enter year 1999
The following date has been removed: 31/12/1999
Enter 1 to add, 2 to show all, 3 to remove, 4 to exit 2
11/11/1918
6/6/1944
Enter 1 to add, 2 to show all, 3 to remove, 4 to exit 4

Summary of key points from this part
1. A container is a type of aggregation.

2. Containers vary in characteristics such as the ability to contain objects of different
types, whether they are of fixed size, and what methods of access they allow.

3. Containers in software give us control over collections of dynamic objects.

265

15 Container classes

4.

Container classes provide us with objects of various types, such as vectors, lists,
stacks and queues.

Containers have iterators to allow various forms of access to the contained objects.
Although these can be implemented as methods of the container, they may alterna-
tively be external functions or separate objects.

Encapsulating collections of objects inside containers simplifies the interface
between the objects and the data structures that are used to contain them.

Vectors (arrays) are a useful general mechanism for containing objects, but lists are
more flexible since they are not of a fixed size.

A list may be singly or doubly linked. An intrusive list requires objects to take
responsibility for referencing each other. A non-intrusive list uses link objects to
manage the contained objects.

Exercises

1.

One of the in-text questions referred to a CD cabinet as an example of a container.
Define a simple ‘CD’ class (maybe with attributes such as ‘artist” and ‘title’) that is
able to instantiate CD objects. How could we declare and initialise an array able to
store 50 pointers of this class? Why would we want to declare an array of pointers
rather than an array of objects?

Create a container class called ‘CDCabinet’ by encapsulating an array inside it.
Provide methods to add a CD to the first available position, remove a CD from a
given position, and report the positions, artists and titles of all CDs in the cabinet.
Write a program to test your container.

Part 2 Heterogenous containers and template classes

Overview

This part of the chapter follows on from the previous discussion of container classes and
the data structures that may be used to implement them. It shows how a heterogenous
collection of objects with polymorphic methods may be managed in a container. A
generic approach to containers using template classes is demonstrated.

A container for heterogenous objects

The container class described previously was able to contain objects of the ‘Date’ class. It
could also, of course, contain objects of any other class derived from “Date” because, as
we know, a base class pointer can be used to instantiate, reference and destroy objects of
any derived class.

In the following example we will create a queue of vehicles that may be either cars or
lorries (Fig. 15.12).

266

Fig. 15.12: a queue of vehicles may contain vehicles of different types.

15 Container classes

A queue such as this might be used for example in a simulation of a toll booth on a
bridge or motorway to estimate waiting times with different traffic flows. The container
(‘TrafficQueue’) is implemented here using an array for simplicity, though other data
structures could easily be used.

If we are going to use a base class pointer in a container to reference different objects at
run time, then we must make sure that all the objects put into the container have a
consistent interface, with methods that can be dynamically bound. In the example
program, the ‘showDetails’ method is defined separately in all three classes and made
“virtual’ for dynamic binding. Note that the destructor must also be made virtual so that
it too can be dynamically bound.

Fig. 15.13 shows the relationship between the container object (‘Traffic Queue’) and the
contained vehicles. Note that ‘Traffic Queue’ is an aggregation of ‘Vehicle” objects, so all
messages sent by the container must be appropriate to vehicles. These messages are then
dynamically bound to the specific instances of ‘Car” and “Lorry” objects that exist in the
container at run time. In fact the only message sent by the container is ‘showDetails’,
which therefore appears in all three classes in the hierarchy. The static methods are not
called by the container, but their return values are dictated by the constructors and
destructors of the dynamic objects. The destructors of the classes in the hierarchy are
therefore virtual, so that different destructors will execute for different classes of
dynamic object.

Vehicle Traffic Queue

registration
vehicle count

LS

back of queue
front of queue

vehicle type items in queue
get vehicle count arrive
show details depart

show traffic

Car Lorry
car count foad type
passengers lorry count
get car count get lorry count
show details show details

Fig. 15.13: UML diagram showing the relationships between the
‘Traffic Queue’ container and the contained ‘Vehicle’ objects.

Example program: a queue of dynamically bound vehicles

The objects in the queue will be derived classes of ‘Vehicle’. Given their close relation-
ship and limited methods, they are all defined in the same header file.

267

15 Container classes

/*
VEHICLE.H The class definition for the 'Vehicle' class and
its descendants; 'Car' and 'Lorry'
*/
// 'Vehicle' is an abstract base class for cars and lorries
class Vehicle
{
protected:
char registration[10];
char vehicle_type[10};
static int vehicle_count;
public:
Vehicle();
virtual ~Vehicle();
virtual void showDetails();
static int getVehicleCount();
I
// class 'Car' inherits from ‘Vehicle'
class Car : public Vehicle

{
private:

int passengers;

static int car_count;
public:

Car();

virtual ~Car();

virtual void showDetails();

static int getCarCount();
I

/lclass 'Lorry' inherits from ‘Vehicle'
class Lorry : public Vehicle

{
private:
char load_type[20];
static int lorry_count;
public:
Lorry();
virtual ~Lorry();
virtual void showDetails();
static int getLorryCount();
b
The implementations for “Vehicle’, ‘Car’” and ‘Lorry’ methods all appear in the same file:
/*
VEHICLE.CPP The method definitions for the 'Vehicle' class and
its descendants; ‘Car' and ‘Lorry'
*/

#tinclude "vehicle.h"

#include <iostream.h>

#include <string.h>

// reserve memory for the static (class) attribute

int Vehicle::vehicle_count;

// the 'Vehicle' constructor increments the vehicle count and gets the
// registration number from the keyboard

Vehicle::Vehicle()

{

vehicle_count++;

268

15 Container classes

cout << "Enter registration number ";
// because the registration has embedded spaces, 'cin' must be used
// with 'get' methods rather than the overloaded '>>' operator. these are
// described in detall in Chapter 17

char temp;

cin.get(temp);

cin.get(registration, 10);

// the virtual destructor decrements the vehicle count. It will automatically
// be called by the dynamically bound destructors of the derived types
Vehicle::~Vehicle()

{
}

// the base class version of this method shows the two inherited attributes
void Vehicle::showDetails()

{

vehicle_count--;

cout << "Vehicle is a " << vehicle_type;

cout << ", registration is " << registration;
}
// the class (static) method that returns the vehicle count
int Vehicle::getVehicleCount()

{

}
/*

return vehicle_count;

Method definitions for the 'Car' class
*/
// reserve memory for the class attribute 'car_count'
int Car::car_count;
// the 'Car' constructor
Car::Car()
{
strcpy(vehicle_type, "Car");
cout << "Enter number of passengers ";
cin >> passengers;
car_count++;
}
// the virtual destructor decrements the car count
Car::~Car()
{

}

// this version of the virtual method calls the base class version
// as part of its implementation
void Car::showDetails()

car_count--;

Vehicle::showDetails();
cout << ", with " << passengers << " passengers" << endl;
}
// the class (static) method that returns the car count
int Car::getCarCount()
{

}
/*

return car_count;

Method definitions for the 'Lorry’ class
*/

269

15 Container classes

// reserve memory for the class aitribute ‘lorty_count'
int Lorry::lorry_count;

// the 'Lorry' constructor

Lorry::Lorry()

{

strcpy(vehicle_type, "Lorry");
cout << "Enter load type ";
char temp;
cin.get(temp);
cin.get(load_type, 20);
lorry_count++;
}
// the destructor decrements the lorry count
Lorry::~Lorry()
{

lorry_count-~;

}
/ this version also calls the base class version
void Lorry::showDetails()

Vehicle::showDetails();
cout << ", carrying " << load_type << endl;

}
// the class (static) method that returns the lorry count
int Lorry::getLorryCount()

{
}

The “TrafficQueue’ class provides the basic functionality of a queue, but is specifically
implemented for objects of the Vehicle class (and its descendants):

/*

return lorry_count;

TRAFFICQ.H The class definition for the 'TrafficQueue’ class
*/
#include "vehicle.h"
// the container class is sized by a constant, but could easily
// be dynamically allocated if required using a pointer and 'new'
const int SIZE = 4;
class TrafficQueue

{
private:
Vehicle* queue[SIZE];
int head_pointer;
int tail_pointer;
int items_in_queue;
public:
TrafficQueue();
~TrafficQueue();
int arrive(Vehicle* arrival);
Vehicle* depart();
void showTraffic();
b
/*
TRAFFICQ.CPP The method definition for the 'TrafficQueue’ class
*/

#include "trafficq.h"
#include <stdlib.h>

270

15 Container classes

/I the constructor initialises all the vehicte pointers to NULL
// it also initialises the array indexes and the counterto 0
TrafficQueue::TrafficQueue()

{
for(int i = 0; i < SIZE; i++)
{

queueli] = NULL;

}
head_pointer = 0;
tail_pointer = 0;
items_in_queue = 0;

} ,

/I the destructor is purely for cleanup
TrafficQueue::~TrafficQueue()

{
for(inti = 0; i < SIZE; i++)
{
delete queueli];
}
}

/ 'arrive' takes a parameter object and places it in the queue.
/1 if there is no space, the parameter object is deleted
int TrafficQueue::arrive(Vehicle* arrival)
{
// local flag variable to return the success or failure of the operation
int added;
// if there is no room in the queue set the flag to O (false) and delete the
// parameter object
if(items_in_queue == SIZE)

added = 0;
// this is not always an ideal approach; you may not want the object destroyed
delete arrival;

/1 if the queue has room, add the new vehicle at the back of the queue
else
{
queueltail_pointer] = arrival;
tail_pointer++;
/I if the end of the array has been reached, start again at
// the beginning
if(tail_pointer == SIZE)
{
tail_pointer = 0;
}
items_in_queue++;
// since the vehicle has been successfully added, set the flag to 1 (true)
added = 1;

// return the flag
return added;
1
// 'depart' takes the next vehicle from the queue, returns it
// and resets the pointer to NULL.
Vehicle* TrafficQueue::depart()
{
// local pointer to return the first object
Vehicle* next_vehicle;

271

15 Container classes

//if the queue is empty, set the pointer o NULL
if(items_in_queue == 0)

{

next_vehicle = NULL;
}
else

// remove the first vehicle from the queue
next_vehicle = queue[head_pointer];
queue[head_pointer] = NULL;

// move the head pointer along to the next vehicle
head_pointer++;

/I if we are at the end of the array, start again at the beginning
if(head_pointer == SIZE)
{

head_pointer = 0;

// decrement the counter
items_in_queue--;
}
return next_vehicle;
}
// this is a simple iterator that displays the contents of the queue
// starting at the head pointer
void TrafficQueue::showTraffic()
{
// start at the head, and keep going until we reach the end of the
/I array ot there are no more vehicles
for(int i = head_pointer; i < SIZE && queueli] != NULL; i++)
{
if(queuefi] != NULL)
{

queuefi] -> showDetails();

}

/I if we reached the end of the array, then there may be more vehicles
// before the head pointer, so start at element 0, and keep going until
// we reach the tail pointer

if(i == SIZE)

{

for(i = 0; i < tail_pointer; i++)
if(queue[i] != NULL)
{
queueli] -> showDetails();

}
}

The test program creates a traffic queue, modelling vehicles arriving and departing on a
‘first in first out’ basis:

272

#include "trafficq.h"
#include <iostream.h>
void main()

{

// create a traffic queue object

15 Container classes

TrafficQueue toll_queue;
// local variables for menu choice and testing success of 'add' operations
int menu_choice = 0;
int add_ok = 0;
// local pointer used to retrieve vehicles from the queue
Vehicle* a_vehicle;
// iterate until menu choice is 5 (quit)
do
{
/I display current totals and menu
cout << endl << "Vehicles in the queue: " << Vehicle::getVehicleCount() << endl;
cout << "Total cars: " << Car::getCarCount() << endl;
cout << "Total Lorries: " << Lorry::getLorryCount() << endl;
cout << "1. Add car to queue" << endl;
cout << "2. Add lorry to queue" << endl;
cout << "3. Get next vehicle" << endl;
cout << "4. Show traffic queue" << endl;
cout << "5. Quit" << endl;
cin >> menu_choice;
switch{menu_choice)

// add a car, using the return value to check for success or failure
case 1: add_ok = toll_queue.arrive(new Car);
if(ladd_ok)
{

}

break;

cout << "No room in the queue for this car!" << endi;

// add a lorry
case 2: add_ok = toll_queue.arrive(new Lorry);
if(ladd_ok)
{

}

break;
// remove the first vehicle in the queue
case 3:
/I return the vehicle from the queue to the local pointer
a_vehicle = toll_queue.depart();
// if a vehicle has been returned, display it (then delete it)
if(a_vehicle != NULL)

cout << "No room in the queue for this lorry!" << endl;

{
a_vehicle -> showDetails();
delete a_vehicle;
}
/1 if no vehicle is returned
else
{
cout << "There are no vehicles in the queue" << endl;
}
break;

// show the fraffic in the queue
case 4: toll_queue.showTraffic();
break;

}

while(menu_choice != 5);

273

15 Container classes

This example test run shows the different types of vehicle arriving in and departing from
the traffic queue:

Vehicles in the queue: 0

Total cars: 0

Total Lorries: 0

1. Add car to queue

2. Add lorry to queue

3. Get next vehicle

4. Show traffic queue

5. Quit

1

Enter registration number A 123 XYZ
Enter number of passengers 4
Vehicles in the queue: 1

Total cars: 1

Total Lorries: 0

1. Add car to queue

2. Add lorry to queue

3. Get next vehicle

4. Show traffic queue

5. Quit

2

Enter registration number Z 666 XXX
Enter load type Beer barrels

Vehicles in the queue: 2

Total cars: 1

Total Lorries: 1

1. Add car to queue

2. Add lorry to queue

3. Get next vehicle

4. Show traffic queue

5. Quit

2

Enter registration number G 84 ORW
Enter load type Rats

Vehicles in the queue: 3

Total cars: 1

Total Lorries: 2

1. Add car to queue

2. Add lorry to queue

3. Get next vehicle

4. Show traffic queue

5. Quit

4

Vehicle is a Car, registration is A 123 XYZ, with 4 passengers
Vehicle is a Lorry, registration is Z 666 XXX, carrying Beer barrels
Vehicle is a Lorry, registration is G 84 ORW, carrying Rats

274

15 Container classes

Vehicles in the queue: 3
Total cars: 1

Total Lorries: 2

1. Add car to queue

2. Add lorry to queue

3. Get next vehicle

4. Show traffic queue

5. Quit

3

Vehicle is a Car, registration is A 123 XYZ, with 4 passengers
Vehicles in the queue: 2
Total cars: 0

Total Lorries: 2

1. Add car to queue

2. Add lorry to queue

3. Get next vehicle

4. Show traffic queue

5. Quit

3

Vehicle is a Lorry, registration is Z 666 XXX, carrying Beer barrels
Vehicles in the queue: 1
Total cars: 0

Total Lorries: 1

1. Add car to queue

2. Add lorry to queue

3. Get next vehicle

4. Show traffic queue

5. Quit

5

Container classes using templates

The problem with the previous list and queue examples is that they are implemented
specifically for a particular class of object. A list of dates can only contain ‘Date” objects
and a queue of vehicles can only contain “Vehicle” objects.

There are two ways to tackle this problem. One is to insist that all objects that are to be
put into containers inherit from a common base class, typically ‘Object’, that provides a
standard polymorphic interface. All descendent classes must then implement the same
methods in order to be managed by the containers. The problem with this is that ‘Object’
will not have the interface methods of application specific classes, so a lot of casting is
required to convert from class ‘Object’ to the classes in an application.

The second option, and the one used to implement the containers in the standard C++
library, is to use template classes (genericity). In Chapter 12, we introduced the template
as a way of creating generic functions in C++. A generic function is, you may remember,
one which is able to process parameter arguments of different types with a single
implementation.

It is also possible to create generic classes, which may be instantiated by parameters of
different types. Typically, classes instantiated in this way are container classes, with the

275

15 Container classes

class of the objects to be contained represented by a generic type name (typically “T", as
for the generic function example, but can be anything). The syntax for a container class is
as follows:

template <class type_name> class name

// class definition

The use of the ‘template’ and ‘class’ keywords has been seen before in the definition of
generic template functions, likewise the pointed brackets around the type name.

If we wanted to create a generic stack class, then, we might declare the class like this:
template <class T> class Stack
{
b
The ‘Stack’ class can then be used to instantiate stack objects, but the type of object that a
given stack may contain is not predetermined by the class definition.

// etc.

Whenever we wish to refer to the data type or class of the elements which are to be
contained on the stack, the alias ‘T is used (again we have seen this use of the alias for
the class type in Chapter 12). A generic pointer for example would be:

T* a_pointer;

When a template stack object is instantiated, this may be a pointer to any data type or
class.

Methods of a template class
Since we will probably wish to define a number of methods for the container class, we

also need to know the syntax for defining a method of a template class out of line. This
takes the following rather convoluted form:

template <class type_name> return_type class_name <type_name> :: method_name
(parameter_list...)

It looks a little simpler in practice. If we assume that our stack class has a “push’ method
(‘push’ being the standard term for putting something on the stack, ‘pop” for removing
it) then the declarator (the first line) looks like this:

template <class T> void Stack<T> :: push(T* object_in)

// method definition
b
Instantiating a template class object
Since an object of a template class is instantiated according to some other data type being
provided, the constructor call is a little different to that normally used. The data type

which is referred to as ‘T’ in the class definition must be given after the name of the class,
using the familiar pointed brackets:

class_name <data_type> object_name(parameter_list...)

For a “Stack’ object instantiated to contain a maximum of 20 integers (in our example the
stack size will be provided as a parameter to the constructor), the constructor call would
be:

276

15 Container classes

Stack <int> a_stack(20);

Instantiating a dynamic template object
Of course, we can also create dynamic objects of a template class, in which case the
rather laborious syntax format is:
class_name <data_type> *pointer_name = new class_name <data_type> (parameter_list...)

Like the out-of-line method definition, it looks a bit less confusing in practice. This
example instantiates a dynamic ‘Stack’ object of ten characters (chars):

Stack <char> *a_stack = new Stack <char> (10);
As in previous examples, the pointer may be declared separately to the constructor:

// declare the pointer

Stack <char> *a_stack;

// instantiate the object

a_stack = new Stack <char> (10);

Once we have instantiated “a_stack” we can treat it like any other dynamic object, calling
its methods with the arrow operator, and calling its destructor when required:

e.g. a_stack -> push('a');

delete a_stack;

A template stack

What follows is the definition of a template ‘Stack’ class, including a constructor which
dynamically sizes the internal array using the ‘new’ operator. This leads to a bit of inter-
esting syntax in the object attributes. Note that if we were to create a fixed size array of
pointers (with five elements in this example) it would be done like this:

T* stack_array[5];

However, to be able to dynamically size the array, we have to use a pointer, so it becomes
a pointer to a dynamic array of pointers! Hence the double asterisk.

T** stack_array;

This may look confusing, but hopefully makes some sense in the context of this line from
the constructor:

stack_array = new T*[size];

Here we can see that one of the pointers has been used to create the dynamic array using
the ‘size” parameter.

Because of the way template classes work, their method definitions must appear in the
header file along with the class definition.

/*
TSTACK.H The definition of a template stack class.
This class can instantiate stack objects able to
contain objects of any type or class provided at run time.
Template classes must include their method definitions
in the header file, not in a separate .CPP file
*/

#include <stdlib.h> // for NULL
template <class T> class Stack

{
277

15 Container classes

278

private:
int max_stack; // integer 1o store size of array
int next_position; // integer for array index
T+ stack_array; // pointer to array of pointers!
public:
Stack(int size);
~Stack();
int push(T* object_in);
T* top();
: T* pop();

// the template stack constructor uses 'new' to dynamically allocate the array
/l and initialises its pointers to NUL.L.
template <class T> Stack<T>::Stack(int size)
{
max_stack = size;
next_position = 0;
// dynamically allocate an array of pointers of type T
stack_array = new T*[size];
// initialise the pointers to NULL
for(inti = 0; i < size; i++)

{
}

stack_array[i] = NULL,;

}

// the destructor does some memory cleanup. it is not essential to
/I check if there are remaining objects which need to be destroyed,
// since it does no harm to 'delete’ a NULL pointer

template <class T> Stack<T>::~Stack()

for(int i = 0; i < max_stack; i++)

{
}

delete stack_arrayfi];

}

// the 'push' method adds an object to the top of the stack. it returns
// an integer to signal the success or failure of the operation
template <class T> int Stack<T>::push(T* object_in)
{
/1 if the stack is full, the object cannot be added,
// and the method returns O (false)

if(next_position == max_stack)

{

return 0;

// otherwise, add it to the top of the stack and return 1 (true)
else

{
stack_array[next_position] = object_in;
next_position++;
return 1;

}

}

// the 'top' method returns the most recently added object
// from the top of the stack without removing it
template <class T> T* Stack<T>::top()

{
T* temp;

15 Container classes

// if there are no objects on the stack, then NULL is returned
if (next_position == 0)

temp = NULL;
}
// otherwise, the object on top of the stack is returned
else
{
temp = stack_array[next_position - 1];
}

return temp;
} ,
// the 'pop’ method returns and removes the most recently added object
// from the top of the stack
template <class T> T* Stack<T>::pop()
{
T* temp;
/I if there are no objects on the stack, then NULL is returned
if (next_position == 0)
{
temp = NULL;

// otherwise, the object on top of the stack is returned
else

{
next_position --;
temp = stack_array[next_position];
stack_array[next_position] = NULL;

}

return temp;

}

An example stack program

Now we have created a template stack class, we can create stack objects to contain any
data type or class. A stack is useful in any context where we want to be able to retrace
our steps, for example in a hypertext browser where we may want to step back through
previously seen pages. The example program does something similar (if very simpli-
fied). It mimics the structure of an adventure game where the player progresses from one
scene to another, but is also able go back to the previous scene. Here is a simple ‘Scene’
class that contains a description of the scene:

P

SCENE.H a class that represents a scene in a (very!) simple adventure game

*f

#include <string.h>

class Scene

{
private:
char description[30];
public:
Scene(char* description_in);
char* getDescription();
5
// the constructor gets a description of the scene from its parameter
Scene::Scene(char* description_in)

{
279

15 Container classes

strncpy(description, description_in, 29);
description[29] = \0';
}
/1 'getDescription’ returns the description of the scene
char* Scene::getDescription()

{
}

Clearly, this is not going to be a very exciting adventure game, since nothing actually
happens in the scenes, but at least it gives a feel for the stack structure. The test program
allows the user to progress back and forth through a number of scenes.

/*

return description;

TSTACKMN.CPP Program to test the template 'Stack’ class
*/
#include "tstack.h"
#include "scene.h"
#include <iostream.h>
// main instantiates a stack of 'Scene' objects, but any data type
/ or class could be used to instantiate template stack objects
void main()
{
int stack_size, choice, pushed;
Scene* temp;
/l instantiate a 'Stack' object with dynamically allocated size
cout << "Enter size of stack required “;
cin >> stack_size;
Stack <Scene> a_stack(stack_size);
cout << "You are at the beginning. Careful with that axe." << endl;
do
{
cout << "Enter: \t 1 to go to a new scene" << endl;
cout << "\t 2 to go back" << endl;
cout << "\t 3 to find out where you are" << endl;
cout << "\t 4 to exit" << endl;
cin >> choice;
switch(choice)
{
// add a new 'Scene' to the stack
case 1 : char buffer[80];
cout << "What is the description of this scene? ";
cin >> buffer;
temp = new Scene(buffer);
pushed = a_stack.push(temp);

if(!pushed)
{
cout << "No more room for scenes" << endl;
delete temp;
}
else
{
cout << "You are now in the " << temp -> getDescription() << end;
}
break;

// remove the scene at the top of the stack
case 2 : temp = a_stack.pop();
/1 if an object has been popped from the stack, display its description

280

15 Container classes

if(temp != NULL)

cout << "You have returned from the " << temp -> getDescription()
<< endl;

// since the object has been removed from the stack and we have no further

// use for i, it is destroyed
delete temp;

}

else

{
cout << "You are at the beginning. Careful with that axe." << endl;
}
break;
case 3 : temp = a_stack.top();
if(temp != NULL)

cout << "You are currently in the " << temp -> getDescription() <<
endl;

}

else

{

cout << "You are at the beginning. Careful with that axe." << endl;

}

break;

}

while(choice != 4);
}
A thrilling test run follows:

Enter size of stack required 4
You are at the beginning. Careful with that axe.
Enter:1 to go to a new scene
2 to go back
3 to find out where you are
4 to exit
1
What is the description of this scene? castle
You are now in the castle
Enter: 1 to go to a new scene
2 to go back
3 to find out where you are
4 to exit
1
What is the description of this scene? forest
You are now in the forest
Enter: 1 to go to a new scene
2 to go back
3 to find out where you are
4 to exit
3
You are currently in the forest
Enter: 1 to go to a new scene

281

15 Container classes

2 to go back
3 to find out where you are
4 to exit
1
What is the description of this scene? valley
You are now in the valley
Enter: 1 to go to a new scene
2 to go back
3 to find out where you are
4 to exit
2
You have returned from the valley
Enter:1 to go to a new scene
2 to go back
3 to find out where you are
4 to exit
2
You have returned from the forest
Enter:to go to a new scene
2 to go back
3 to find out where you are
4 to exit
2
You have returned from the castle
Enter: 1 to go to a new scene
2 to go back
3 to find out where you are
4 to exit
2
You are at the beginning. Careful with that axe.
Enter: 1 to go to a new scene
2 to go back
3 to find out where you are
4 to exit
4

Genericity of containers

It is useful to consider how generic a container class may be. In this chapter we have
created a class called ‘List” whose methods are not particularly generic (for example it
sends messages directly to ‘Date” objects) and may only contain objects of a given class
or its derivatives. Our queue class, though demonstrating polymorphic objects, was also
constrained to managing only a small set of classes.

In contrast, we created a generic stack able to contain objects of any class. However, the
methods it could apply to any given object are of course limited; the more generic a
container, the harder it is to anticipate its contents and therefore the less it can do to what
it contains. With containers, as with many other aspects of classes, we are often compro-
mising between reusability and functionality. A clear example of this is that our earlier

282

15 Container classes

‘List’ and “TrafficQueue’ containers had built in iterators to display their contents, which
demanded some knowledge of the methods of the objects. A container class library
based on polymorphism (with a base class ‘Object’ as a standard ancestor) could include
standard output methods for derived classes to implement, but could not anticipate all
types of iterator that users might need. Template classes typically have more general iter-
ators that are able to return each object from the container in turn but do not attempt to
send them any messages. That aspect is left to the application programmer.

However generic a container class may be, it will still require some effort on behalf of the
programmer to ensure that his/her own classes can be successfully contained by it. Typi-
cally, at least one method or overloaded operator will have to be provided to allow
objects to be retrieved from the container.

Summary of key points for this part

1. Containers may contain heterogenous collections of objects of different classes. All
contained objects must, however, be of classes with a single ancestor. In polymorphic
class libraries this base class is usually called ‘Object’.

2. When building a container for objects in a classification hierarchy, the container
sends messages via the base class, so all methods must be virtual (polymorphic), and
all objects must have a common interface.

3. Generic container classes can be constructed using templates, allowing container
objects to be instantiated for different types of contained object.

Exercises
1. Write a program to test the template stack class using any data type or object class.

2. One container class which is often used is an “Array’ or “Vector’ class. Encapsulating
an array inside a class allows us to simplify its interface and enhance its function-
ality. A good example of this is the fact that C++ has no bounds checking on arrays.
By building an ‘Array’ class, we can add bounds checking into the internal imple-
mentation of the class.

(a) Write an ‘IntegerArray’ class that allows integer array objects to be instantiated.
It should have suitable methods such as ‘add’, ‘remove’ and ‘flush’ (use your
own judgement in deciding what other methods may be appropriate).

(b) Write a generic “Array’ class by re-implementing ‘IntegerArray’ as a template
class.

3. Our ‘List’ class is currently only able to contain objects of the class ‘Date’. What
modifications would it have to undergo in order to be generic (able to contain objects
of any class?) Bear in mind that the ‘Link’ objects currently have pointers to the
‘Date’ class, and that the container sends some class-specific messages to the
contained objects. Rewrite the ‘List’ and ‘Link’ classes to make them useable with
any data type. Test your code by making a list of dynamically allocated arrays of
type “char’.

283

16 Multiple inheritance

Overview

In this chapter we look at multiple inheritance, which allows a class to inherit from more
than one base class. Uses of this facility are outlined, and potential conflicts between
inherited elements are discussed. The role of virtual base classes and scope resolution in
resolving ambiguity are demonstrated. Circumstances where multiple inheritance is
necessary are contrasted with those where other strategies can achieve similar results.
The role of mixins is explained, also the use of interface classes to successfully inherit
from more than one class hierarchy. C++ syntax for multiple inheritance, resolving ambi-
guity and multiply inheriting from classes with polymorphic methods is demonstrated.

Single and multiple inheritance

When we discussed inheritance in Chapter 8, we stated that it is based on “a kind of” rela-
tionships, so that class A may only inherit from class B if it can be said that A is “a kind
of’ B. An oak, for example, is ‘a kind of’ tree, so we could say that ‘oak’ inherits from
‘tree’. This is known as ‘single inheritance’, where a class inherits from a single base class
(though one base class may have many derived classes). Sometimes, however, single
inheritance may not be enough to truly describe ‘a kind of relationships which exist
between classes. Fig. 16.1 shows two classes, ‘tree” and ‘flowering plant’. Tt also shows a
‘flowering tree’, which is both ‘a kind of’ tree and “a kind of flowering plant. We might
therefore make a case for saying that a flowering tree should inherit from both tree and
flowering plant, since it will have the characteristics of both. This is ‘multiple inheri-
tance’ where the derived class inherits from more than one base class.

Fig. 16.1: Multiple inheritance: A flowering tree is both
‘a kind of’ tree and ‘a kind of’ flowering plant.

Multiple inheritance does not often prove necessary in an object-oriented system, and
not all object-oriented languages support it. However, it may be very useful in certain
circumstances.

284

16 Multiple inheritance

As Booch states:

‘we find multiple inheritance to be like a parachute: you don’t always need it, but when
you do, you're really happy to have it on hand.’ [Booch, 1994, p.124]

Muliiple inheritance in software

In the real world, because of the complexity of nature, it is easy to find objects which are,
at least to some extent, similar in form and behaviour to more than one other type of
object. In software, however, the issues have to be more specifically analysed to see if
multiple inheritance truly applies to a situation, or if it causes more problems than it
solves. In a classification hierarchy, we have seen how a derived class may inherit the
attributes and methods of a single base class. The inherited methods may then be used,
extended or overridden by the derived class. This form of inheritance (single inheri-
tance) is frequently all that is required, but occasionally we may want to ‘multiply
inherit” attributes and methods from more than one other class. (Fig. 16.2)

Base Class 1 Base Class 2

Derived Class

Fig. 16.2: Multiple inheritance — a derived class
inherits from more than one base class.

Multiple inheritance has the advantage of allowing us to mix information from more
than one source, and extends the potential circumstances where we can reuse existing
classes. However, the disadvantages can be that complexity is increased, and conflicts
can arise between inherited attributes and methods. A class which inherits from more
than one other class is sometimes called a “join’ class, because it joins together two other
classes, frequently from the same hierarchy. This means that the classes from which we
inherit may well themselves have inherited from a single base class (Fig. 16.3) so we are
rejoining branches of a hierarchy tree.

Ancestor

[r <4—— single inheritance

Base 1 Base 2

I I

4——— multiple inheritance
Derived

Fig. 16.3: Complexity can be increased by multiple
inheritance if multiple base classes have common ancestors.

285

16 Multiple inheritance

Question 16.1 What is the difference between single and multiple inheritance?

Single inheritance means that a class can inherit from no more than one other class. With multiple inheritance, o
class can have two or more base classes.

Ambiguity in multiple inheritance

In some cases, multiple inheritance is a straightforward amalgamation of two (or more)
different classes into a single class. The new class is therefore composed of other classes
so that the whole (of the multiply inheriting class) is the sum of its parts (the multiple
base classes). This simplicity of structure (similar to aggregation) is not always present,
because there may be elements of the inherited base classes which overlap in some way.
This may be because the base classes have polymorphic methods. A derived class cannot
inherit more than one method with the same name without the programmer providing
some clarification of which implementation of the method is being used in a particular
context. There may also be a common ancestor in the hierarchy tree, which means that
the same attribute or method is inherited more than once via different paths. Because of
these possibilities, there are a number of circumstances in which multiple inheritance
can cause ambiguity. It is necessary for the programmer to deal with these in the imple-
mentation of the classes, using whatever means are available in a particular language,
and different languages have different strategies for dealing with these ambiguities.

Specifically, ambiguity can arise when:

1. A derived class inherits two methods with the same name but different implementa-
tions from its multiple base classes. These may or may not be semantically different.

2. A derived class overrides a multiply defined inherited method, but calls a base class
method as part of its implementation.

3. A derived class accesses an attribute or method inherited from a single ancestor by
multiple base classes.

Some examples will suffice to outline the potential problems, using the simple hierar-
chies shown in Figs 16.2 and 16.3, with the classes ‘Ancestor’, ‘Base 1, ‘Base 2" and
‘Derived’.

Multiple inheritance of a method name

The first possible ambiguity occurs when a class inherits two different methods with the
same name from two base classes (Fig. 16.4). If the derived class simply overrides the
name with a different implementation, then there is no ambiguity. However, one of the
existing methods may be the one we want to use with objects of the derived class. In this
case, a derived class object is unable to use that method name directly, since it is not clear
to the compiler which implementation is required. Therefore it is necessary for the
derived class to specifically call one or more of the available base class implementations
in an overriding method.

286

16 Multiple inheritance

Base 1 Base 2
- display display —|
Derived

Fig. 16.4: Multiple inheritance can cause ambiguity if a derived class
inherits two identically named methods from different base classes.

Interface classes

A further complication arises if methods which share a name are inherited from separate
hierarchies. We may find that such methods are semantically unrelated, but both are
required to be dynamically bound by the derived class. Since dynamic binding requires
a consistent name for a method throughout the hierarchy, how can we have two versions
of one polymorphic method? We might rename one method, but what if it comes from a
hierarchy which we cannot change — perhaps a library of classes from some third party
which does not allow us access to change the source code?

Stroustrup gives an example of a games program which includes the classes ‘Window’
and ‘Cowboy’ [Stroustrup 1991, pp 457-459], which we may assume to be in separate
hierarchies. Both of these classes have a ‘draw’ method, but the ‘Window’ class draws a
window and the “Cowboy’ class draws a gun. If we inherit both of these classes into a
‘CowboyWindow’ class, we want to be able to respond to ‘draw’ messages sent via the
‘Window” hierarchy, but also to ‘draw’ messages sent via the ‘Cowboy’ hierarchy. Strous-
trup demonstrates how we can overcome this problem by overriding the two ‘draw’
methods in “interface classes’, effectively creating an extra level of inheritance. The role
of the interface classes is to override the inherited ‘draw’ method so that a ‘draw’
message sent at run time is renamed, calling a different virtual method in the derived
class.

In this example, the interface class "'WWindow’ overrides the ‘draw’ method of the
‘Window’ class with a method called ‘windowDraw’, and the other interface class
‘CCowboy’ overrides the ‘draw’ method of ‘Cowboy’ with ‘cowboyDraw’. “Cowboy-
Window” inherits ‘draw’ from the two interface classes, which themselves call the virtual
methods defined in “CowboyWindow” (Fig. 16.5). What this means is that ‘Cowboy-
Window will respond to ‘draw’ messages sent via the “Window’ hierarchy with its
‘windowDraw’ methods, but ‘draw’ messages sent via the ‘Cowboy’ hierarchy will
invoke the ‘cowboyDraw’ method.

287

16 Multiple inheritance

Window Window and Cowboy Cowboy
have different ‘draw’

Draw methods Draw

WWindow | The interface classes CCowboy

windowDraw oyemde draw’ to call cowboyDraw
differently named

Draw abstract methods Draw

T]

CowboyWindow can now
use its own definitions of
cowboyDraw both methods in response
to ‘draw’ messages sent
via the two hierarchies

CowboyWindow

windowDraw

Fig. 16.5: “Interface classes’ may be used to resolve method
name clashes in multiple inheritance hierarchies.

Such problems as these tend to arise in programs which relate to games or operating
systems, so fortunately we do not encounter them too often.

Extending a multiply inherited method

The second form of ambiguity arises when we wish to override a method name which
occurs in more than one of the base classes, but we want to extend one of the inherited
methods to provide our implementation (Fig. 16.6). In this case we will have to specify
which of the available methods is being used as part of the derived class method. In
terms of syntax, this is very similar to using an inherited method to implement the
derived class method - the specific implementation required must be stated.

Base 1 Base 2
display display -
|
Derived
display —— extends

Fig. 16.6: An overriding method which extends an inherited method will
have to specify which version is being used for implementation.

288

16 Multiple inheritance

Multiple inheritance of the same attribute or method

The third form of ambiguity is where an attribute or method is inherited from a single
ancestor via more than one inheritance path (Fig. 16.7). In this example, the ‘Derived’
class multiply inherits two instances of the attribute ‘value’, which is again problematic
for the compiler. It may be that two versions of the same attribute are required in the
derived class, in which case any inherited methods which reference the attribute must be
handled carefully to ensure the correct version of the attribute is being used in a partic-
ular context. Alternatively, it may be the case that we do not want to inherit two versions
of the same attribute, so we need a strategy to ensure that there is only one instance of it
in the derived class. Object-oriented languages must resolve such ambiguities so that
attributes and methods inherited in this way are correctly managed by the derived class.

‘Base 1’ inherits a Ancestor ‘Base 2’ inherits a
‘value’ attribute ‘value’ attribute

value

I

Base 1 Base 2
value value

Derived

value value

‘Derived’ inherits two ‘value’ attributes!

Fig. 16.7: Languages must resolve ambiguity caused by
the same attribute being inherited more than once.

Question 16.2 In general terms, what may cause ambiguity in multiple inheritance?

Ambiguity can arise in multiple inheritance when the same attribute or method name is inherited more than once.

Using multiple inheritance

As an example of multiple inheritance, we might take a thermostat — a device which
keeps a system at a constant temperature. Thermostats are simple devices, but have two
underlying elements:

1. A temperature gauge.
2. Aswitch.

A thermostat connected to a central heating system, for example, will turn the system on
and off depending on the temperature.

Were we to model a thermostat in an object-oriented program, we would be looking for
appropriate ways to provide these two discrete but connected behaviours. It may be that

289

16 Multiple inheritance

both of these sets of behaviours are available in existing classes which model tempera-
ture gauges and switches A thermostat is therefore both ‘a kind of” temperature gauge
and ‘a kind of” switch, and we might justifiably use inheritance to model these relation-
ships.

For the sake of this example, we will assume that the classes “Temperature Gauge’ and
‘Switch’ have the following characteristics:

T ¢ Switch
emperature gauge
P gaus Status
Current temperature
Turn on
Get temperature Turn off

We have some options on how to model the ‘Thermostat’ class:
1. Create the class from scratch.

2. Use aggregation — include objects of the temperature gauge and switch classes as
components of the thermostat.

3. Use multiple inheritance so that the thermostat can inherit the attributes and
methods of both temperature gauge and switch.

Clearly the first option will lead to duplication of existing class functionality and is
therefore losing the benefits of inheritance. This also may have other implications for
control of the system, since control of a set of objects is often implemented via their
membership of a single class hierarchy.

The second option (aggregation) is a possibility, and the choice between this and
multiple inheritance in some cases is a matter for the programmer. If the object being
modelled is clearly composed of discrete components, but may not really be “a kind of’
either of them then perhaps aggregation is a better reflection of reality, particularly if the
new device requires a lot of extra functionality not provided by any of its base classes. If,
however, the behaviour of a class may be largely defined in terms of behaviours
provided by existing classes then multiple inheritance may be preferable. Again, we
should be aware that an aggregate ‘“Thermostat’ will not be in the same hierarchy as
either of its components.

One possible advantage for the programmer of the third option, multiple inheritance, is
that it gives the methods of the derived class direct access to the inherited attributes. Fig.
16.8 shows “Thermostat’ as a derived class of both “Temperature Gauge’ and ‘Switch’. In
this case, any methods defined for ‘“Thermostat’ will have direct access to protected
attributes of the base classes, which would not be the case with aggregation. The main
advantage, however, is that objects of the multiply derived class may be referenced by
pointers of any of its base classes.

290

16 Multiple inheritance

Temperature Gauge Switch
temperature status
get temperature turn on
turn off
|
Thermostat

required temperature

set temperature
monitor temperature

Fig. 16.8: A ‘Thermostat’ modelled using multiple inheritance
from ‘Temperature Gauge” and ‘Switch’ classes.

Alternatives to multiple inheritance

For an alternative approach, let us visualise some kind of industrial system which
includes valves which have to be monitored for the temperature, pressure and flow of
water through each valve. A computer model is to be built to capture data from the
physical system and allow central control of the system components. Every valve in the
system will have associated with it a physical device which will be represented by an
‘object’ in the system.

The device we need to model has to be able to monitor the temperature, flow and pres-
sure of the water and adjust the valve settings appropriately. It therefore has the charac-
teristics of both a temperature gauge and a pressure and flow gauge, but also has the
functionality of a valve controller.

Let us assume that we already have classes which are able to represent two discrete
objects:

1. A temperature gauge
2. A pressure and flow gauge.

Both of these objects are passive (they only capture data, they do not have any control
mechanisms), and their methods simple return attribute states.

A “Valve Controller” might therefore inherit from both ‘Temperature Gauge’ and ‘Pres-
sure/Flow Gauge’, giving it perhaps the following inherited attributes and methods:

291

16 Multiple inheritance

Valve controller

Temperature in °c
Pressure in Kg/cm?

Flow in metres per second

Get temperature
Get pressure
Get flow

However, the valve controller needs much more than this, since it will be an active
device, using the data provided by temperature and pressure/flow gauges to control the
valve. There may be a number of other methods to provide information in the light of
this data. Our ValveController device may need to add other methods such as ‘valve
position” (with possible state values of ‘open’ or ‘closed’) and methods which controlled
the valve according to various relationships between temperature, pressure and flow.

In fact the ValveController is not really “a kind of” temperature gauge or “a kind of’
pressure/flow gauge, but a much more complex device which simply uses objects of
these other classes in its implementation — what Booch calls a ‘using relationship’.
Although multiple inheritance achieves part of the required result, it probably does not
offer anything which could not equally (or better) be achieved by alternative
approaches. We might use aggregation (making temperature gauge and pressure/flow
gauge objects components of the valve controller) or simply allow the valve controller to
send messages to objects of these other classes and receive the appropriate information.

When to use multiple inheritance

Given that we may use sometimes have a choice between multiple inheritance and alter-
native strategies such as aggregation or association, when is multiple inheritance prefer-
able? The answer to this question depends on a number of factors:

1. What are the semantics of the objects — is our new object ‘a kind of’ more than one
other object, or rather are those other objects ‘a part of” our new object, or simply
other discrete objects which communicate with it?

2. Will aggregation or association be simpler to implement?

3. If we use multiple inheritance, what ambiguities have to be overcome?
4. Is it necessary that our new object is a derived class?

Booch advises:

‘Our rule of thumb is that if an abstraction is greater than the sum of its component parts,
then using relationships are more appropriate. If an abstraction is a kind of some other
abstraction, or if it is exactly equal to the sum of its components, then inheritance is a
better approach’ [Booch, 1991, p.116].

One of the key questions we need to address is whether the new object has to be a
derived class in order to be effectively managed in the program. As we know, object

292

16 Multiple inheritance

management mechanisms such as containers require a consistent interface for all the
objects they send messages to. This consistent interface is provided in the implementa-
tion by pointers of a common base class. Therefore it is essential that any new classes
inherit the ability to be referenced by a base class pointer and respond to the messages
common to the objects in the hierarchy. This can only be done via inheritance.

Question 16.3 What single factor might cause us to choose multiple inheritance over
aggregation as a way of representing an object?
The key advantage multiple inheritance has over aggregation is that it allows objects of the derived class fo be

dynamically bound in the same hierarchy/hierarchies as its base classes. Incidentally, it is also necessary where
virtual methods must be overridden by derived classes — an aggregation cannot do this.

Combining inheritance and aggregation

One possible alternative approach to multiple inheritance is to use single inheritance, so
that we inherit from one base class, and aggregate an object of the other class. This
decision may well rest on semantics — rather than an object being ‘a kind of” multiple
base classes, perhaps it is more “a kind of” one base class but has some characteristics of
other objects which may be provided by aggregation or association. It may also be the
only pragmatic choice if our implementation language does not support multiple
inheritance, though it will limit the potential for the object to respond to messages sent
via a class hierarchy. In fact there are a number of ‘workarounds’ which may be used as
alternatives to multiple inheritance [Rumbaugh et al, 1991, pp.67-69]. Languages such as
Java (which does not support multiple inheritance) allow ‘interfaces’ to be described,
that are not inherited but may be multiply implemented, giving a similar effect to
multiple inheritance.

Mixins
One problem with multiple inheritance is that combining together complete base classes
may well involve the inheritance of much that is unwanted. One variation on inheritance
is the “mixin’ class — an abstract class which is not intended for the instantiation of
objects, but is used purely as a base class for multiple inheritance. A mixin class provides
added functionality for existing classes through an abstract set of behaviours that can be
applied to more concrete objects. An analogy might be the set of ‘extras” applied to
higher specification cars across a range of models. The ‘executive’ mixin might comprise
electric sunroof, expensive stereo, sophisticated alarm etc. which can be added to any

model type in a range of vehicles. An ‘executive’ object is never made — it only makes
sense as a class when ‘mixed in’ with an object of an appropriate vehicle class.

For a programming example, we might model a range of electronic components as
classes in some kind of circuit simulator, but these may need to be modelled in terms not
only of their normal functionality but also of the heat which they generate in operation
and any thermal feedback which may result. These characteristics may be represented in
a ‘mixin’ class which can be multiply inherited by all component objects. An example
from Booch suggests mixin classes for ‘flowers’ and “fruits’ to provide the general behav-
iours of these two types of plant. These classes may then be multiply inherited by
specific plants in conjunction with other base classes [Booch, 1994 p.63]. The behaviour
of a mixin is generally clearly defined and orthogonal to the class with which it is being
combined, so is unlikely to be the cause of any ambiguity.

293

16 Multiple inheritance

C++ syntax

The syntax for declaring multiple inheritance in C++ is simple, and dealing with poten-
tial ambiguities is also relatively straightforward, though there are a number of
subtleties to the syntax in specific contexts (See [Stump, 1993] and [Stroustrup, 1991
pp-201-211] for further discussion). Since there are no default mechanisms for dealing
with ambiguous multiple inheritance, the compiler requires us to explicitly resolve it.

Elements of the syntax are:
1. A list of base classes after the colon ‘inheritance’ operator.

2. The “virtual’ keyword, which may be used to ensure that ancestor classes are only
inherited once.

In order for one class to inherit from more than one base class, the class must be declared
as follows:

class classname : public base1, public base?2

This means that the class will inherit from both “basel’ and ‘base2’. Note the comma
separator between classes in the base class list.

To return to our “Thermostat’ class, if it was to inherit from the ‘TemperatureGauge’ and
‘Switch’ classes, the class definitions might look like this:

// the temperature gauge class:
class TemperatureGauge
{
private:
float temperature;
public:
float getTemperature();
h
// the ‘Switch’ class. remember that ‘switch’ (with a small ‘s’)
/l'is a C++ keyword, so the capital ‘S’ is very important!
enum status{on, off};
class Switch
{
private:
status switch_status;
public:
void turnOn();
void turnOff();
5
// ‘Thermostat’ inherits from both classes
class Thermostat : public TemperatureGauge, public Switch
{
private:
float required_temperature;
public:
void setRequiredTemperature(float temp);
void monitorTemperature();
I
To demonstrate the syntax of multiple inheritance, and explore the resolution of
some ambiguities, we will return to a revised version of our ‘BankAccount’ class.
In this version, ‘BankAccount’ serves as a base class for two derived classes,
‘SavingsAccount’” and ‘ChequeAccount’. These in turn are multiple base classes for the

‘InterestChequeAccount’ class (Fig. 16.9).
294

16 Multiple inheritance

Bank Account

current balance

get current balance

deposit

withdrawal
Savings Account Cheque Account
interest rate allowed overdraft
get interest rate get overdraft

I f

Interest Cheque Account

Fig. 16.9: ‘InterestChequeAccount’ multiply inherits
from ‘SavingsAccount’ and ‘ChequeAccount’.

The class and method definitions are as follows:

#include <iostream.h>
// a simplified ‘BankAccount’ is the base class
class BankAccount

{
private:
float current_balance;
public:
BankAccount();
float getCurrentBalance();
void deposit(float amount);
void withdrawal(float amount);
b
BankAccount::BankAccount()
{
current_balance = 0.00;
}
float BankAccount::getCurrentBalance()
{
return current_balance;
}
void BankAccount::deposit(float amount)
{
current_balance = current_balance + amount;
}
void BankAccount::withdrawal(float amount)
{

current_balance = current_balance — amount;

// ‘SavingsAccount’ inherits from ‘BankAccount’
class SavingsAccount : public BankAccount

{

295

16 Multiple inheritance

private:
float interest_rate;
public:
SavingsAccount();
float getinterestRate();

%S’avingsAccount: :SavingsAccount()
{ cout << "Enter interest rate ";
cin >> interest_rate;
iloat SavingsAccount::getinterestRate()
{ return interest_rate;
}

// ‘ChequeAccount’ inherits from ‘BankAccount’
class ChequeAccount : public BankAccount

{
private:
float allowed_overdraft;
public:
ChequeAccount();
void setOverdraft(float overdraft_in);
float getOverdraft();
k
ChequeAccount::ChequeAccount()
{
cout << "Enter allowed overdraft ";
cin >> allowed_overdraft;
}
void ChequeAccount::setOverdraft(float overdraft_in)
{
allowed_overdraft = overdraft_in;
}
float ChequeAccount::getOverdraft()
{

return allowed_overdraft;

/I 'InterestChequeAccount’ inherits from both derived classes.

// It has no attributes or methods of its own, but has all the

// attributes and methods of both ‘SavingsAccount’ and ‘ChequeAccount’

class InterestChequeAccount : public SavingsAccount, public ChequeAccount
{

b

The following program demonstrates the instantiation of objects of the classes
‘SavingsAccount’, ‘ChequeAccount’ and ‘InterestChequeAccount’. In this case. there is
no ambiguity because we are not attempting to call any methods inherited twice from
‘BankAccount’ (such as ‘deposit’):

296

#include "bankacct.h" // header as defined above

void main()

{
SavingsAccount savings;
cout << "This is a savings account, interest rate is: ";
cout << savings.getinterestRate() << "%" << endl;
ChequeAccount cheque;

16 Multiple inheritance

cout << "This is a cheque account, allowed overdraft is: £";

cout << cheque.getOverdraft() << endl;

InterestChequeAccount combined;

cout << "This is an interest paying cheque account:" << endl;

cout << "Interest rate: " << combined.getinterestRate()<<"%" <<endl;
cout << "Overdraft limit: £" << combined.getOverdraft() << endi;

}
Example output from this program:

Enter interest rate 6

This is a savings account interest rate is: 6%

Enter allowed overdraft 500

This is a cheque account, allowed overdraft is: £500
Enter interest rate 3

Enter allowed overdraft 1000

This is an interest paying cheque account:

Interest rate: 3%

Overdraft limit: £1000

Virtual base classes and scope resolution

In order to deal with the potential ambiguities of the inheritance tree described above,
there are some simple syntax strategies. Ambiguity will arise if we attempt to call
methods of the multiple base class ‘BankAccount’ with objects of the
‘InterestChequeAccount’ class — in effect, each object will have inherited two versions of
the same method. A similar problem arises if we attempt to define any methods for the
‘InterestChequeAccount’ class which do not simply replace inherited versions. If they
call on method names which are inherited from both ‘SavingsAccount’ and
‘ChequeAccount’, then there must be some resolution of which version is being called.
Finally, if a method of ‘InterestChequeAccount’ needs to refer to attributes declared in
‘BankAccount’ then they will also (as the classes currently stand) be inherited twice and
therefore cause ambiguity — in this context we cannot have two current balances for a
single account, so we have to ensure that only one version of the attribute is inherited.
Fig. 16.10 shows a modified class hierarchy which demonstrates how some of these
difficulties might arise.

297

16 Multiple inheritance

Bank Account

current balance

get current balance

deposit

withdrawal

show details
Savings Account Cheque Account
interest rate allowed overdraft
get interest rate get overdraft
show details show details

I f

Interest Cheque
Account

show details
check status

Fig. 16.10: A modified ‘BankAccount’ class hierarchy with inherent ambiguity.

In the modified hierarchy, a method called ‘show details’ appears in all four classes. As
before, the attributes and methods of the ‘BankAccount’ class will be inherited via two
paths into ‘InterestChequeAccount’. In the following class and method definitions, a
number of syntax strategies are applied. These are as follows:

1.

298

Use of ‘virtual” base classes to avoid multiple inheritance of the same attribute or
method. This is indicated on classes inheriting from ‘BankAccount’ as follows:

class SavingsAccount : virtual public BankAccount

class ChequeAccount : virtual public BankAccount

This ensures that any further classes inheriting from these classes will only inherit
one ‘BankAccount’, not two. As well as allowing an “InterestChequeAccount’ object
to call methods defined for the ‘BankAccount class, it also allows ‘Inter-
estChequeAccount’ methods to refer to attributes inherited from ‘BankAccount’, as
in the ‘checkStatus’” method defined in the example, which refers to the
‘current_balance’ attribute.

Use of the scope resolution operator to identify which polymorphic inherited
method is being called. ‘InterestChequeAccount’ has three versions of the “showDe-
tails’ method, so any call to one of these must be explicit, using the scope resolution
operator. Here, the “showDetails” method for the ‘SavingsAccount’ class is explicitly
called in the derived class version of the method.

void InterestChequeAccount::showDetails()

{

16 Multiple inheritance

SavingsAccount::showDetails();

The modified classes and methods are as follows:

#include <iostream.h>
class BankAccount

{
protected:
float current_balance;
public:
BankAccount();
float getCurrentBalance();
void deposit(float amount);
void withdrawal(float amount);
void showDetails();
b
BankAccount::BankAccount()
{

current_balance = 0.00;

float BankAccount::getCurrentBalance()

{

return current_balance;
void BankAccount::deposit(float amount)
{

current_balance = current_balance + amount;

void BankAccount::withdrawal(float amount)

{
current_balance = current_balance — amount;
}
void BankAccount::showDetails()
{
cout << "Current Balance is: £" << current_balance << endl;
}

/1 to avoid further derived classes inheriting the same attributes and
// methods more than once from ‘BankAccount’, it is declared as a
/1 ‘virtual’ base class

class SavingsAccount : virtual public BankAccount

{
protected:
float interest_rate;
public:
SavingsAccount();
float getinterestRate();
void showDetails();
b
SavingsAccount::SavingsAccount()
{
cout << "Enter interest rate ";
cin >> interest_rate;
}
float SavingsAccount::getinterestRate()
{
return interest_rate;
}

299

16 Multiple inheritance

300

void SavingsAccount::showDetails()
{
BankAccount::showDetails();
cout << "Interest rate is: " << interest_rate << "%" << endl;
}
// *ChequeAccount’ also inherits from ‘BankAccount’ as a virtual base class
class ChequeAccount : virtual public BankAccount

{
protected:
float allowed_overdraft;
public: ,
ChequeAccount();
void setOverdraft(float overdraft_in);
float getOverdrafi();
void showDetails();
b
ChequeAccount::ChequeAccount()
{

cout << "Enter allowed overdraft ";
cin >> allowed_overdraft;

void ChequeAccount::setOverdraft(float overdraft_in)

allowed_overdraft = overdraft_in;

}
float ChequeAccount::getOverdraft()
{
return allowed_overdraft;
}

void ChequeAccount::showDetails()

BankAccount::showDetails();
cout << "Alowed overdraft is: £" << allowed_overdraft << end!;

class InterestChequeAccount : public SavingsAccount, public ChequeAccount

{
public:
void checkStatus();
void showDetails();
I

// ‘InterestChequeAccount’ is able to refer to the multiply inherited method
// names by using the class name and scope resolution operator. Note that we could call both
// base class methods, but this would mean that
// ‘BankAccount::showDetails’ would be called twice, once for each of the
// inherited methods
void InterestChequeAccount::showDetails()
{
SavingsAccount::showDetails();
cout << "Allowed overdraft is: £" << allowed_overdraft << endl;
}
// this method is able to access ‘current_balance’ without ambiguity
// because only one instance of this attribute has been inherited due to
// ‘BankAccount’ being a virtual base class
void InterestChequeAccount::checkStatus()
{

if(current_balance > 0)

{

16 Multiple inheritance

cout << "Pay interest" << endl;

}
else
{
cout << "Send a large bill" << endi;
}

}

The following program shows that ambiguities have been overcome. ‘showDetails’ may
be successfully called by all three objects, and the base class method ‘deposit’ is called
without ambiguity by the ‘InterestChequeAccount’ object, which also calls its “check-
Status’ methods (accessing the base class attribute ‘current_balance’).

#include "bankacc2.h" // assumes the modified header file
void main()

{

cout << "This is a savings account” << endl;
SavingsAccount savings;
savings.deposit(350.00);
savings.showDetails();

cout << "This is a cheque account" << endl;
ChequeAccount cheque;
cheque.deposit(50.00);
cheque.showDetails();

cout << "This is an interest paying cheque account:" << endl;
InterestChequeAccount combined;
combined.deposit(25.00);
combined.showDetails();
combined.checkStatus();

}
This program generates the following output:

This is a savings account
Enter interest rate 6.5
Current Balance is: £350
Interest rate is: 6.5%

This is a cheque account
Enter allowed overdraft 1000
Current Balance is: £50
Allowed overdraft is: £1000
This is an interest paying cheque account:
Enter interest rate 3

Enter allowed overdraft 500
Current Balance is: £25
Interest rate is: 3%

Allowed overdraft is: £500
Pay interest

Multiple inheritance of a single attribute

When looking at the bank account hierarchy, we had to ensure that the ‘current_balance’
attribute was only inherited into the ‘InterestChequeAccount’ class once, although it was
inherited via two paths in the hierarchy. Clearly, in this case it was not permissible to
have two attributes representing the balance of a single account, and we resolved this by

301

16 Multiple inheritance

making ‘BankAccount’ a virtual base class. There are some circumstances, however,
when the multiple inheritance of a single attribute is not only acceptable but desirable.
To demonstrate, we will use a simplified example which is based on types of railway
locomotive. In some parts of the country, there is a mixture of power sources for locomo-
tives, for example some track is electrified and some is not. To allow trains to travel on
different track types, some locomotives have more than one type of motor. An elec-
trodiesel for example has an electric motor for travelling over electrified track, and a
diesel motor for non-electrified track. In the following class outlines, an “ElectroDiesel’
inherits two ‘power_rating” attributes, one from a ‘Diesell.ocomotive’ base class and
another from an ‘ElectricLocomotive’ base class. Both of these classes inherit a
‘power_rating’ attribute from the base class ‘Locomotive’. Which of these attributes is
being referenced in ‘main’ by the base class ‘setPowerRating’ method is defined by the
scope resolution operator. This is a rather clumsy syntax, so we might alternatively
provide a method in the ‘ElectroDiesel’ class to set the values of the ‘power_rating’
attributes. The key point is that the derived class is able to reference both its attributes,
resolving ambiguity by qualifying each reference to an attribute by a base class name
and the scope resolution operator.

For example:
ElectricLocomotive::power_rating

This is the attribute inherited via the ‘ElectricLocomotive’ class. In contrast, the identi-
cally named attribute inherited from the ‘DieselLocomotive’ class is referenced as:

DieselLocomotive::power_rating
The following class definitions and ‘main” demonstrate this syntax:

#include <iostream.h>
// the base class provides the ‘power_rating’ attribute and a method to set it
class Locomotive

{
protected:
float power_rating;
public:
void setPowerRating(float power_in);
I
void Locomotive::setPowerRating(float power_in)
{
power_rating = power_in;
}

// the two derived classes both inherit the attribute and method
class DieselL.ocomotive : public Locomotive

{3
class ElectricLocomotive : public Locomotive

// the ‘ElectroDiesel’ inherits a ‘power_rating’ attribute from both base
// classes
class ElectroDiesel : public DieselLocomotive, public ElectricLocomotive
{
public:
void showPower();
I
// the ‘showPower’ method uses the scope resolution operator to reference
// the inherited attributes, one inherited from ‘ElectricLocomotive’, the other

302

16 Multiple inheritance

// from ‘DieselLocomotive’
void ElectroDiesel::showPower()
{
cout << "Electric motor power: "
<< ElectricLocomotive::power_rating << endi;
cout << "Diesel motor power: "
<< DiesellL.ocomotive::power_rating << endl;

}
void main()

// an object of the ‘ElectroDiesel’ class which has two motors
ElectroDiesel locomotive;

// the scope resolution operator allows us to call the inherited

// 'setPowerRating’ method for specific derived classes, and therefore set

// the two ‘power_rating’ attributes
locomotive.ElectricLocomotive::setPowerRating(10000);
locomotive.DieselLocomotive::setPowerRating(5000);

/ the ‘showPower’ method displays the two motor ratings
locomotive.showPower();

}

The output from the program is simply the values of the two ‘power_rating” attributes:

Electric motor power: 10000
Diesel motor power: 5000

Multiple inheritance and polymorphic methods

Although we have overcome the potential ambiguities in multiple inheritance by the use
of virtual base classes and the scope resolution operator, there is one other aspect which
may be important, namely the maintenance of a consistent interface between different
objects in a single hierarchy. As we have discussed before, if a collection of dynamic
objects of different classes is to be managed successfully, they must have a consistent
interface, provided by the methods of the base class. This is because dynamic objects
may be referenced by base class pointers at run time, but the pointers must be able to
handle messages for objects of all derived classes. In the ‘InterestChequeAccount’
example, ‘checkStatus’ is not a method of the base class, so we could not successfully
instantiate objects of different bank account types using the base class pointer.

The following ‘main’ indicates the problem:

#include "bankacc2.h"
void main()

{

BankAccount* pointer;
pointer = new InterestChequeAccount;
pointer -> withdrawal(50);
// the next line cannot compile; not a method of ‘BankAccount’
pointer -> checkStatus();
}
This of course is not a problem confined to multiple inheritance - single inheritance hier-
archies have exactly the same behaviour. However, we may find that the necessity for a
consistent interface among different classes provides us with certain opportunities in
multiple inheritance, namely the ability to create classes which are blends of other
classes, rather than combinations of them. Take the following hierarchy, which shows

303

16 Multiple inheritance

staff members being either lecturers or administrators, but with the possibility that a
‘secondment’ member of staff is a combination of both (Fig. 16.11)

Staff

job description
contract

go to work {abstract}
show contract {abstract}

i
| |

Lecturer Administrator

go to work go to work
show contract show contract

f f

Secondment

go to work
show contract

Fig. 16.11: ‘Secondment’ is a mix of ‘Lecturer’ and ‘Administrator’
rather than being the sum of two discrete elements.

In this case, ‘secondment’ is a lecturer (i.e. someone employed on a lecturing contract)
who is working in administration. Therefore a ‘secondment’ object uses the ‘show
contract’ method of the lecturer class, but the ‘go to work’ method of the “Administrator’
class. The important point is that all classes have exactly the same interface, so they may
be successfully referenced by a pointer of the ‘Staff’ class, which contains the abstract
(virtual) methods for the interface of all classes in the hierarchy.

A definition of these classes follows:

#include <iostream.h>
// ‘Staff’ is the base class, with all attributes and abstract methods
class Staff
{
private:
char job_description[30];
public:
virtual void goToWork() = 0;
virtual void showContract() = 0;
I
// ‘Lecturer’ inherits from ‘Staff’ (single inheritance from virtual base class)
class Lecturer : public virtual Staff

{
pubilic:
virtual void goToWork();
virtual void showContract();
h

304

16 Multiple inheritance

// ‘Lecturer’ methods override the abstract methods in the base class
void Lecturer::goToWork()

{
}

void Lecturer::showContract()

{
}

// ‘Administrator’ inherits from ‘Staff’ (single inheritance from virtual base
// class)
class Administrator : public virtual Staff
{
public:
virtual void goToWork();
virtual void showContract();

cout << "Staff job description: Lecturer" << endl;

cout << "Staff member on lecturing contract" << endl;

b
/1 ‘Administrator’ methods override the abstract methods in the base class
void Administrator::goToWork()

{
cout << "Staff job description: Administrator" << endi;
}
void Administrator::showContract()
{
cout << "Staff member on administration contract" << endl;
}

// ‘Secondment’ inherits from both ‘Lecturer’ and ‘Administrator’
/I (multiple inheritance)
class Secondment : public Administrator, public Lecturer
{
public:
virtual void goToWork();
virtual void showContract();
b
// ‘Secondment’ methods are a combination of inherited methods
void Secondment::goToWork()

{
Administrator::goToWork();
}
void Secondment::showContract()
{
Lecturer::showContract();
}

Our main function demonstrates that we can reference objects of all derived classes in
the hierarchy with a base class pointer, and that the behaviour of ‘secondment’ is a
blend, rather than an amalgamation, of its own base classes.

void main()
{
Staff* staff_member{3];
staff_member[0] = new Lecturer;
staff_member[1] = new Administrator;
staff_member[2] = new Secondment;
for(inti=0; i < 3; i++)
{
cout << endl << "Staff member details:" << endl;
staff_member[i] -> goToWork();

305

16 Multiple inheritance

staff_member][i] -> showContract();

}

The output from this program is:

Staff member details:
Staff job description: Lecturer
Staff member on lecturing contract

Staff member details:
Staff job description: Administrator
Staff member on administration contract

Staff member details:
Staff job description: Administrator
Staff member on lecturing contract

Coding an interface class

Although a rather specialised application, the interface class example mentioned earlier
has some points of syntax worth exploring. In essence, the interface classes exist purely
to rename a message being sent down the hierarchy tree, so that a ‘draw’ message
received by the ‘CowboyWindow’ class is resolved either by “WWindow’ or “CCowboy’,
depending on which hierarchy initiated the message. Each of these interface classes then
renames the method before, in effect, passing it back to ‘CowboyWindow’ for

interpretation.

306

#include <iostream.h>

// class ‘Window’ and class ‘Cowboy’ are not in the same hierarchy.
// however, they both have ‘draw’ methods, and these are semantically

/] unrelated.
class Window

{
public:

virtual void draw();
b
void Window::draw()
{

cout << "Draw Window" << endl;
}
class Cowboy
{
public:

virtual void draw();
I
void Cowboy::draw()
{

cout << "BANG!" << endl;

// the interface classes override both versions of ‘draw’
// to call virtual methods defined in ‘CowboyWindow’
class CCowboy : public Cowboy
{
public:

virtual void cowboyDraw() = 0;

virtual void draw();

16 Multiple inheritance

b
void CCowboy::draw()
{

cowboyDraw();

class WWindow : public Window

{

public:
virtual void windowDraw() = 0;
virtual void draw();

b ,

void WWindow::draw()

{

windowDraw();

// class ‘CowboyWindow’ does not redefine ‘draw’, so it relies
/l on its base classes for implementation. These then call
// ‘cowboyDraw’ or ‘windowDraw’ depending on the class of the
// pointer which sends the ‘draw’ message
class CowboyWindow : public CCowboy, public WWindow
{
public:

virtual void cowboyDraw();

virtual void windowDraw();
I
void CowboyWindow::cowboyDraw()

{

cout << "Yippeeyiyay"” << endl;

void CowboyWindow::windowDraw()

{

cout << "Cowboy Window" << endl;

/l main shows the same message (‘draw’) being passed to
// 'CowboyWindow' objects via base class pointers in different hierarchies.
// although the message is the same, the objects are able to respond
// differently
void main()

{
Window* w_pointer = new CowboyWindow;
w_pointer -> draw();
Cowboy* ¢_pointer = new CowboyWindow;
c_pointer -> draw();

}

When the program runs, our ‘CowboyWindow’ responds with the following:
Cowboy Window
Yippeeyiyay
Multiple inheritance with parameterised constructors

Finally, we sometimes inherit from multiple classes with parameterised constructors. If
this is the case, then the parameter list of the derived class constructor must be followed
by the parameter lists of the base classes, separated by a comma. This is a similar syntax
to the multiple inheritance syntax used with the declaration of the class itself:

DerivedClass::DerivedClass(...) : basel(...), base2(...) etc...

307

16 Multiple inheritance

By way of example, the following class definitions show ‘SalariedCommission’ (a sales per-
son who receives both salary and commission) inheriting from ‘Salaried” and ‘Commission’.
Both base classes have parameterised constructors which are inherited by the derived class.

#include <iostream.h>
class Salaried
{
private:
float salary;
public:
Salaried(float start_salary);
float getSalary();
b
Salaried :: Salaried(float start_salary)

{

salary = start_salary;

}
float Salaried::getSalary()

{
return salary;
}
class Commission
{
private:
float commission_rate;
public:
Commission(float start_commission);
float getCommission(float sales);
b
Commission::Commission(float start_commission)
{
commission_rate = start_commission;
}
float Commission::getCommission(float sales)
{

return (commission_rate * sales)/ 100;

// the ‘SalariedCommission’ constructor explicitly inherits the parameter
// lists of both base classes
class SalariedCommission : public Salaried, public Commission

{
public:

SalariedCommission(float start_salary, float start_commission);
b

SalariedCommission::SalariedCommission(float start_salary, float start_commission)
: Salaried(start_salary), Commission(start_commission)
{
// ‘mair’ creates an object of the derived class and tests its constructor
// and inherited methods
void main()
{
SalariedCommission sales_person(15000.00, 10.00);
cout << "Salary is: £" << sales_person.getSalary() << endl;
cout << "Commission is: £ "
<< sales_person.getCommission(100000.00);

308

16 Multiple inheritance

Output is:

Salary is: £15000
Commission is: £10000

Summary of key points from this chapter

1.
2.

Multiple inheritance applies where a class is ‘a kind of’ more than one base class.

A class which multiply inherits has all the attributes and methods of all its base
classes.

Ambiguity may arise when using multiple inheritance for a number of reasons.
Ambiguity means that an identically named attribute or method is inherited from
more than one source.

Sometimes the same method may be inherited via more than one pathway from a
single ancestor. The scope resolution operator may be used to resolve these ambigu-
ities. In other cases, different methods with the same name may be inherited via
separate hierarchies. This problem can be resolved using interface classes.

The same attribute may be inherited twice from a single ancestor, and this may be
desirable. If it is not, then the ancestor can be made a virtual base class.

Alternative strategies to multiple inheritance include aggregation, association
(‘using’ relationships), interface classes and single inheritance combined with aggre-
gation. However, these do not allow the same opportunities for dynamic binding
that are possible with multiple inheritance.

A class which multiply inherits may be the sum of its parts (if the multiple base
classes are entirely separate) or may be a mix of existing classes (if they are in the
same hierarchy).

Exercises

1.

Earlier in the chapter, we looked at a “Thermostat’ class which multiply inherited
from ‘TemperatureGauge’ and ‘Switch’. Expanding on the class definitions
provided, write implementations for the two ‘Thermostat’ methods
‘setRequiredTemperature’ and ‘monitorTemperature’. The thermostat should turn
on when the temperature falls below the required temperature. You will need to
modify your classes to provide some kind of nominal temperature to represent the
reading of the temperature gauge (which you will not actually have!)

Re-model the ‘Thermostat’ as an aggregation of its component parts and compare
the syntax.

Add another derived class to the ‘Staff” hierarchy so that an administrative employee
can be seconded to do lecturing work.

309

17 Persistent objects, streams and files

Overview

This chapter discusses object persistence, and how objects can be made to persist beyond
the lifetime of a single program run time, so that they may become common to multiple
applications. The characteristics of object-oriented databases as a means for creating and
maintaining persistent objects are discussed. Although C++ has no standard mecha-
nisms for implementing persistent objects, the syntax for streams and files is outlined in
the context of providing persistent attribute data for objects.

Object persistence

In Chapter 6, we discussed the persistence of objects within a program. The lifetime of an
object can vary from a momentary existence inside the body of a function or method, to
persistence for the life of the program. However, in all cases we have only looked at
objects which exist at run time. None of our previously instantiated objects have been
able to persist after the program has finished running, but in practice there are three
levels at which objects may persist:

1. Objects persisting during a run of a program.

2 Objects persisting between runs of a single program.
3. Objects persisting between different programs.

Objects which only exist while a program is running are known as ‘transient objects’ —
they have no existence independent of a single program run time. Those whose lifetimes
extend beyond the boundaries of a single program run are known as ‘persistent objects’.

Storing objects

In order for an object to be persistent, it must be stored on disk in some form. The

problem with objects is that they do not fit easily with the traditional formats of stored

data. As we have previously discussed, traditional approaches to programming separate

processes and data, so that data is easily stored independently of any associated

processes. This is not the case with objects, because objects have two aspects:

1. The data associated with attributes.

2. The processes associated with methods.

An object’s attributes are unique to that object, and therefore may be stored as a set of

data similar to a record in a traditional file. However, the methods are part of the class,

shared by all other objects of the class, and these are not so easily stored. If an object is to

retain its integrity, both its state and its class need to be stored on disk — not just its state

alone. We therefore have two ways of approaching the implementation of persistent

objects:

1. Store attribute data independently of methods. This means shifting from an object-
oriented approach to a more traditional file based approach when storing object
data, and back again when re-loading it.

2. Use an object-oriented database.

310

17 Persistent objects, streams and files

Question 17.1 What is a ‘transient object’?

A transient object is one whose lifetime does not extend beyond a single program run. Unlike a persistent object,
therefore, it does not need to be stored on disk.

Storing objects in traditional files

It is not possible to store all aspects of an object when using traditional types of file
organisation, but it is possible to maintain ‘pseudo-persistent objects’ by storing
attribute data in files. While a program is running, objects can write their state data out
to disk as a record or series of records, and then this data can be reloaded later during
another run of the program. Semantically, we do not really have a persistent object,
because only the state of the object has been stored. As we know, an object comprises
three parts - state, identity and behaviour. The state can be saved, and the behaviour can
to an extent be maintained (albeit separately) by the class definition, but the identity of
an object is rather different. In fact, when we rebuild an object from state data stored in a
file, we are recreating another object with the same state as the original, rather than
maintaining the existence of the original object. However, for most practical purposes
this kind of data storage is adequate, though it puts the onus on the programmer to
ensure that objects retain their integrity when their classes are represented in source code
and their states are saved elsewhere in data files.

Object-oriented databases

‘In object-oriented databases, not only does the state of an object persist, but its class
must also transcend any individual program, so every program interprets this saved
state in the same way.’ [Booch, 1994, p.76]

Object-oriented databases allow us to store both the class and state of an object between
programs. They take the responsibility for maintaining the links between stored object
behaviour and state away from the programmer, and manage objects outside of
programs with their public and private elements intact. They also simplify the whole
process of rendering objects persistent by performing such tasks invisibly.

As well as recognising that persistence has to do with time (i.e. a persistent object can
exist beyond the program which created it) we should be aware that it also has to do
with space (the location of the object may vary between processors, and even change its
representation in the process).

Aspects of object-oriented databases

Object-oriented databases have developed to address two rather distinct needs:
1. Providing databases which can be used to generate applications in their own right.

2. Providing persistent objects for applications generated in other programming
languages.

311

17 Persistent objects, streams and files

real object

relational model object-oriented model
Fig. 17.1: Object-oriented databases store objects “whole’ not as disassembled data elements.

Between these two extremes lie a number of variations and a range of definitions as to
what might constitute an object-oriented database. The most important characteristic of
an object-oriented database is that it is able to store objects “whole’, rather than disas-
sembling them into constituent data sets (Fig. 17.1).

In terms of the way in which these databases work, there are two general types; those
which have taken an evolutionary path, extending traditional relational databases to
handle objects, and those which are fully object-oriented from the ground up.

There is no single model for object-oriented databases, so the interpretation of what
constitutes an Object Database Management System (ODBMS) is dependent on a partic-
ular vendor’s approach. There are a number of general comparisons which can be made
between various database models [Chaudhri, 1993]. In one respect there are a range of
data models (e.g. non-first normal form, object-oriented language, functional and
semantic models), and also a range of architectures. These include object managers (simple
object filing systems), extended database systems (with built in query languages), data-
base programming languages (i.e. extensions to existing languages) and relational object
shells (relational databases with object-oriented interfaces).

There are many issues involved in the debate about the value of object-oriented data-
bases (compared to hierarchical, network or relational databases) and the ways in which
they may be implemented, but from our point of view their role is simple — storing the
objects we create in programs. If we do not have an object-oriented database at our
disposal, then storing and retrieving objects is that much harder.

Question 17.2 What are the advantages of storing objects in an objectoriented database
as opposed to using fraditional file structures?

Because an objectoriented database stores object ‘whole’ rather than simply storing atiribute data, it makes it
much easier to handle the objects in different programming contexts. Although it is possible to give the impression
of a persistent object by storing its atfributes in a traditional file, it is harder to maintain that object’s integrity
between different programs.

312

17 Persistent objects, streams and files

C++ syntax

Unfortunately, C++ does not have any standard facilities for the persistence of objects. In
fact it has no I/O syntax at all — all the I/O we have used in the example programs has
been via the classes, objects, operators and methods defined in ‘iostream.h’.

Streams

A stream is a general term for a data flow, which may be to and from a file, or to and
from screen and keyboard, or to and from other ‘sinks” and ‘sources’ of data. An object-
oriented stream library contains a number of classes, each of which is appropriate to a
different kind of stream. In C++, the “ifstream’ class for example provides us with appro-
priate methods for managing input disk files.

The ‘iostream.h’ stream library defined by Stroustrup [1995, pp.325 — 359] is given as a
simple basis for the larger stream libraries provided by compiler vendors. As such it is
fairly limited, but does provide enough for the storage and retrieval of object attribute
data. The library is intended to be used both with simple data types and user defined
(object) types. It is also based on the idea of streams being redirectable, so the syntax
which we have used to accept keyboard input and produce screen output is easily
applicable, (with some modifications) to file I/0O. All stream classes are in a classification
hierarchy based on the ‘ios’ class, and provide all the objects, operators and methods
needed for console I/O and file handling.

Stream operators and methods

The operators and methods defined by Stroustrup for use with stream objects are as

follows:

Output: << (insertion operator)
put(char)

Input: >> (extraction operator)
get(char&)

get(char*, int, char)

These may be used to handle various types of data such as single characters, numeric
data types, strings, strings with embedded spaces and object attribute data.

Stream output
In previous examples, we have seen many statements like the following:
cout << "Hello";

but where does this syntax come from? In fact, ‘cout’ is an object of the ‘ostream’ class (as
defined in iostream.h) and ‘<<’ is an overloaded operator of that class able to handle a
range of data types. We can further overload this operator to output our own data types.
Alternatively, the ‘put’ method puts a single character into the output stream.

Stream input

Like ‘cout’, “cin’ is an object, but in this case it is an object of the “istream’ class which
relates to the input stream. As you might expect, “>>" is an overloaded operator of the
istream class. Again, we can overload this operator to allow the input of objects of user
defined types (classes).

313

17 Persistent objects, streams and files

When using the input stream, remember that the ‘cin’ object using the “>>" operator
treats whitespace as a delimiter, so that more than one item can be input in a single state-
ment provided they are separated by white space:

intx,y, z

cin>> X >>y >> z;
This will read a sequence of three whitespace-separated integers. This is (as we have
discovered) a bit limiting, since we sometimes want to input text which includes
embedded spaces. In such cases we can use the ‘get’ method of the “istream’ class. ‘get’
comes in two versions:

1. The first version of ‘get’ can be used to get a single ‘char’
prototype: istreamé& get(char& c);

example: char char_in;
cin.get(char_in);

2. The second version of ‘get’” can be used to get a string which may contain spaces. The
default terminating character is the newline (‘\n’) but this can be overridden by
another terminating character to accept multi-line input if required:

prototype: istream& get(char* p, int n, char = \n’)

example: char buffer[80];
cin.get(buffer, 80);

When the second version of ‘get’ is used to read a string of characters from the input
stream, it always leaves the terminating character ("\n’ by default) at the next stream
position. This can lead to problems when we next want to read a character or string,
because the “\n’ (or other terminator) will automatically terminate the next attempt to
read from the stream. Therefore we need to read past this terminating character with a
single char “get’ before reading in the next set of data. This program demonstrates how
cin.get(char®, int, char = "\n’) allows input of data with embedded spaces, but leaves the
terminating character in the stream. The character is then read in and its ASCII value
displayed (the ASCII value of ‘\n” is 10).

#include <iostream.h>
void main()
{
// declare a char array to get the characters into
char buffer[80};
// get a string of characters from the keyboard
cout << "Type in a string with embedded spaces ";
cin.get(buffer, 80);
// extract the terminating character from the stream into 'temp'
char temp;
cin.get(temp);
// display the text (note the \" to display speech marks)
cout << "The text entered is \"" << buffer <<'\"' << endl;
// display the ASCIl value of the character (cast to int so it is not
// used as a newline on the screen). the ASCII value of \n' is 10
cout << "The ASCII value of the character left in the stream is " << (int)temp << endl;

}

This is a test run:

Type in a string with embedded spaces | am a stream
The text entered is "l am a stream”

314

17 Persistent objects, streams and files

The ASCII value of the character left in the stream is 10

Checking data types

Since we often want to do something with input data such as analyse its type for
processing or error detection, it is useful to be able to identify the data type of a character.
This can be done by standard functions available in a standard C header file called
‘ctype.h’. The most useful are:

Function Returns TRUE (1) for:

int isalpha(char) a-zorA-Z7
int isdigit(char) 0-9

int isspace(char) space, tab ("\t'), carriage return ("\1r’), newline ("\n’) or
formfeed (‘\f)

int isascii(char) In the ASCII table (i.e. >= 0 and <= 127)

This simple program shows how we might use the “isdigit’ function to wait for a char-
acter in the range 0 - 9:

#include <iostream.h>
#include <ctype.h>

void main()
{
char x;
do
{
cout << "Enter a single digit in the range 0-9 “;
cin >> X;
} while(lisdigit(x));

}

The ‘ios’ class

Both ‘ostream” and ‘istream’ are derived classes of the ‘ios” class. This class provides us
with some useful methods, including these:

Method Purpose
int width(int) Sets a field width — minimum only (will not truncate)
char fill(char) Sets a fill character

int precision(int) Sets the precision of floating point numbers

long set(long) Sets the format of a field

The following program demonstrates how some of these can be used to format data, in
this case the output format of a float variable. Note that for each ‘cout” statement, all of
these formats need to be reset:

#include <iostream.h>
void main()

float x = 12.36;
cout << x << endl;

315

17 Persistent objects, streams and files

// set the field width to 10. the data will right justify by default
cout.width(10);
cout << x << endl;
// keep the wide field and change the fill character
cout.width(10);
cout.fill('_');
cout << x << endl;
// left justify the data in the wide, filled field
cout.width(10);
cout.fill('_");
cout.setf(ios::left);
cout << x << endl;
// set the floating point precision to one decimal place
/I (will round up)
cout.precision(1);
cout << x << endl;

}
The output from this program is:
12.36
12.36
1236
1236
12.4

Manipulators

One problem with the ‘ios” format specifiers is that each formatting statement has to be
made separately from all the others. This means that there is no logical connection
between the separate operations. As an alternative approach, we can use ‘manipulators’
to put the formatting statements directly into the input or output operations. Manipula-
tors are defined in a file called “iomanip.h’, and they have a similar role to the ios format
specifiers. Although their functions do not exactly match with the formatting methods of
the ios class, many are similar, as the following table shows:

Manipulator Purpose
setw(int) Sets a field width —~ minimum only (will not truncate)
setfill(char) Sets a fill character

setprecision(int) Sets the precision of floating point numbers
setiosflags(long) Calls an ios formatting method

The following program produces exactly the same output as our previous example
which used ios flags, but this time uses the manipulators:

#include <iostream.h>
#include <iomanip.h>
void main()
{
float x = 12.36;
cout << X << endl;
cout << setw(10) << X << endl;
cout << setw(10) << setfill(’_") << x << endl;
cout << setw(10) << setfill('_") << setiosflags(ios::left) << x << endl;

316

17 Persistent objects, streams and files

cout << setprecision(1) << x << endl;
}
As the example program indicates, manipulators can be inserted directly into the input
or output statements, making the code easier to follow.

Overloading “istream’ and ‘ostream’ operators

In order to handle the input and output of objects, we need to be able to treat them in the
same way as other data types. In previous examples we have seen the use of the ">>" and
‘<<’ symbols to input and output data respectively. As we know, these are in fact opera-
tors of the “istreani” and ‘ostream’ classes, overloaded to handle the various built in data
types of C++. Like other operators, they can be further overloaded, and we can do this
explicitly to allow them to handle user defined types (classes). We looked at the syntax
for overloading operators in Chapter 11, and you may remember that the ‘operator’
keyword is used, follow by the operator to be overloaded.

In general terms, to overload the insertion operator (‘<<’) the method prototype would
be:

ostream& operator << (ostream&, class_type&);

where ‘class_type’ is a parameter of some user-defined class, passed by reference. The
method returns a reference to an ‘ostream’ object, and also takes one as a parameter. The
extraction operator (">>') can be similarly overloaded with references to ‘istream’
objects:

istream& operator >> (istream&, class type&);

The stream objects need to be returned from the overloaded operators because this
allows them to be chained together, e.g.

cout << "Hello" << name;

The following program shows how objects of class ‘Person’ can be handled by these

overloaded operators:
/*
PERSON.H class and method definitions for "person”
*/
#include <iostream.h>
#include <string.h>
class Person

{
private:
char name[20];
int age;
public:
char* getName();
int getAge();
void setName(char* name_in);
void setAge(int age_in);
b
char* Person::getName()
{
return name;
}
int Person::getAge()
{

317

17 Persistent objects, streams and files

return age;
iloid Person::setName(char* name_in)
{ strncpy(name, name_in, 19);
name[19] = \0';
zloid Person::setAge(int age_in)
{ age = age_in;
}

// the '>>' operator is overloaded to handle the input of ‘Person' objects

istream& operator >> (istream& in, Person& person)

{
char temp_name[20];
int temp_age;
cout << "Enter name: ";

// note that 'get' is used to handle embedded spaces
in.get(temp_name, 19);
cout << "Enter age: ";
in >> temp_age;

// the object passed by reference has its atiributes set
person.setName(temp_name);
person.setAge(temp_age);
return in;

}

// the '<<' operator is overloaded to handle the output of ‘Person’ objects

ostream& operator << (ostream& out, Person& person)

{
return out << "Name: " << person.getName() << endi
<< "Age: " << person.getAge() << endl;

}

//in main, a 'Person’ is input and output using ‘cin’ and 'cout’

/*

PERSON.CPP

*/

#include "person.h”

void main()

{

Person a_person;
cin >> a_person;
cout << a_person;

}
Running the program simply allows us to input a name and age, which are then
displayed back on the screen:

Enter name: Rip Van Winkle

Enter age: 100

Name: Rip Van Winkle

Age: 100
As we will see, this overloading of input and output operators can be used equally effec-
tively when writing and reading object attributes to and from files.

318

17 Persistent objects, streams and files

Files

Much of the stream I/ O syntax which we have used for previous examples may be used
for file handling, but the classes may in some cases not be defined in ‘iostream.h’ but in
another header file (e.g. ‘fstream.h’ or similar).

The most important classes for file handling in the stream class hierarchy are:

ifstream (input files)
ofstream (output files)
fstream (files for both input and output)

To open a file for output (writing), then, we instantiate an object of the ‘ofstream” class.
Similarly, a file is opened for input (reading) with an object of the ‘ifstream’ class. In
order to open a file, an object of the appropriate stream class must be instantiated, and
associated with a disk file name. These activities may be done in a single statement or
separately, by creating the object first and then assigning it to a filename.

Opening files

The two forms of the syntax for opening files are as follows:

Syntax version 1
This version instantiates the object and opens the file in one statement:
stream_type object_name (filename, opening_mode);

For example, we could open an output file as follows, with an ofstream object called
‘outfile’ and a file called ‘test.dat”:

ofstream outfile("test.dat");

We do not have to state the opening mode, since it has default values. The default value
for an object of the “ofstream’ class is for the file to be opened for output (writing).

Syntax version 2

This version instantiates the object in one statement, and uses the ‘open’ method to open
the file:

stream_type object_name;

object_name.open(filename, opening_mode);
In this example, an object of the “ifstream’ class called ‘infile’ is instantiated, and then
used to open a file called “test2.dat’:

ifstream infile;

infile.open("test2.dat");
Again, the default opening mode is used, which for an ‘ifstream” object is for input
(reading).
The opening mode is defined by an integer value, but is usually specified via an enumer-
ated type in the ‘ios’ class which allows us to name the opening modes using the scope
resolution operator. The possible opening modes are as follows (as defined by Strous-
trup, but may vary between compilers):

319

17 Persistent objects, streams and files

Opening

mode flag Effect

iosuin open for input (default for ifstream)

ios:out open for output (default for ofstream)

ios::ate open and seek end of file

ios:app append all output

ios:trunc destroys contents of existing file by truncating it to position 0
ios:nocreate ~ open fails if the file does not exist

ios:noreplace open fails if the file exists

For example, let us suppose that we want to open a file for output, but ensure that all
new output is appended to the end of any existing data in the file. In this case, we would
want to open the file to append as follows (using the same object and file name used in
the previous “ofstream’ example):
ofstream outfile("test2.dat", ios::app);
We may find that we need to specify more than one opening mode. This can be achieved
by combining modes using the “ | character. This example shows how an output file can
be opened to truncate the file but for the open to fail if the file does not already exist:
ofstream outfile("test2.dat", ios::trunc | ios::nocreate);
Another useful method for use with files is “close”: e.g.

outfile.close();

However, this is only necessary if the file object does not fall out of scope at the point
where it must be closed. Otherwise the file object destructor will close the file
automatically.

‘ostream’ file methods
Two of the methods inherited from the ‘ostream’ class allow us to manipulate the file
pointer of an output file. The methods are:

ostream& seekp(streampos);
streampos tellp();

where ‘streampos’ represents the character position in a file. ‘seekp” moves the file
pointer to the given position, whereas “tellp’ returns the current position.

‘istream’ file methods

With an input stream, we can look at the stream position referenced by the file pointer.
The ‘peek’ method returns the next character to be read without actually reading it:

int peek();
These two methods are the corollary to “seekp” and ‘tellp’ in the ostream class, because
they move and report the position of the file pointer respectively:

istream& seekg(streampos);
streampos tellg();

320

17 Persistent objects, streams and files

This program demonstrates some aspects of ‘fstream’ objects. First, it opens an “fstream’
file object for both input and output, and then writes three characters to the file. Because
‘fstream’ inherits from ‘iostreamy’, it is able to use the insertion and extraction operators
in much the same way as ‘cin’ and ‘cout’, but the data streams to and from files rather
than screen and keyboard. Here, the insertion operator (‘<<’) is used to write to the file.
Then file stream methods are used to position the file pointer (‘seekg’), look at the next

character (‘peek’) and read it from the file (‘get’):
/*
SEEK&TEL.CPP Program to demonstrate what 'seekd’, 'tellg' and 'peek’ are for
*/
#include <fstream.h>
void main()
{
// create an fstream object for both writing and reading
fstream file("file.dat", ios::in | ios::out);
// send three characters to the file using the insertion operator
file << 'a’
file <<'b';
file << 'cY
// move the input file pointer to position 2
file.seekg(2);
// display the current position of the file pointer
cout << "Position of input file pointer is " << file.telig() << endl;
// look at the next character in the file (position 3) with the 'peek’
/I method. since it returns an integer, the ASCII value is displayed
cout << "ASCI value of next character in the file is " << file.peek() << endl;
// use 'peek' again, this time casting to type 'char' to see the letter
// note that using 'peek’ has not moved the file pointer
cout << "Next character in the file is " << char(file.peek()) << endl;
// retrieve the next character in the file and display it
char char_in;
file.get(char_in);
cout << "Character read from file is " << char_in << endl;

}
The output from this program is:
Position of input file pointer is 2
ASCII value of next character in the file is 99
Next character in the file is ¢
Character read from file is ¢

Obijects of the ‘fstream’ class

Objects of the ‘fstream’ class inherit from the ‘iostream’ class. ‘iostream’ multiply inherits
from both istream and ostream (Fig. 17.2), so an ‘fstream’ object has all the methods of
both istream and ostream objects.

321

17 Persistent objects, sireams and files

A\

istream ostream

£\ £\

iostream

fstream

Fig. 17.2: In the ‘iostream’ class hierarchy, ‘iostream’ multiply inherits
from both ‘istream’ and ‘ostream’. ‘iostream’ is the base class for ‘fstream’.
Some compiler implementations may vary.

An ‘fstream’ object has separate file pointer positions for reading and writing, so we
may, for example, use both ‘seekp” and ‘seekg’ with an fstream file. It can also be opened
in a range of ways, so we often need to specify more than one opening mode. This file for
example is opened for both input and output:

fstream in_and_out("iofile.dat", ios::in | ios::out);

There is no default for “fstream’ objects, so a mode must be defined.

Detecting the end of file

When handling input files, it is essential that we are able to detect the end of file. This
may be done with method of the ios class called ‘eof” which returns 1 (true) when the
end of file is detected:

while(linfile.eof())

/...
}

File handling with character i/o and file pointers

The following program demonstrates an ‘fstream’ file being used for character 1/0. It
indicates how the file pointer may be used, and how single characters may be written to
and read from files. Although objects are written and read in a rather different way,
manipulating a character at a time is a useful and flexible way of handling data. In this
case, a string is written to file, and then the file is modified before the data is read back in
and displayed. Be aware, however, that not all compiler’s stream libraries behave in
exactly the same way.

#include <fstream.h>

#include <string.h>

void main()

{
// declare a string of characters in an array
char string[] = "File handling advice don\'t hold it by the sharp end";
// open a file for /O
fstream iofile(“File.txt", ios::trunc | ios::in | ios::out);
// this loop counts through the individual characters in the array,

322

17 Persistent objects, streams and files

// until the last character. the size of the string is worked out
// by the 'strlen’ function defined in 'string.h'
for(int i = 0; i <= strlen(string); i++)

// write out one character at a time using 'put’
iofile.put(string[i]);

// move the file pointer using 'seekp’
iofile.seekp(21);
// show the current position using 'tellp’
cout << "Current file position is: " << iofile.tellp() << endl;
/f output a different character at the current file position
iofile << '!';
// declare another array to receive input from the file
char string2[80];
i=0;
char temp_char;
iofile.seekp(0);
// read characters using 'put’ until the end of file (using 'ios::eof()')
while(liofile.eof())

iofile.get(temp_char);
string2[i] = temp_char;
i++;
}
/1 display the modified string
cout << "String is: " << string2 << endl;

}
The program outputs the following messages:

Current file position is: 21
String is: File handling advice ! don’t hold it by the sharp end

Object i/o using overloaded operators

So far we have looked at how stream operators may be overloaded to work with objects,
and how files are handled. In the next example, we draw together these two aspects to
show object attributes being written to and from disk via a file stream. Like class ‘Person’
in the previous example, the ‘Box’ class, representing a three dimensional object, is
handled by overloaded insertion and extraction operators. In this example, however,
they are not used for keyboard input and screen output but for streaming to and from a
file object.

Overloaded operators as ‘friend functions’

In the ‘Person” example, the insertion and extraction operators were separately defined

functions (not members of any class) taking ‘Person’ objects as parameters. This

approach has two drawbacks:

1. Inside the functions, the parameter objects could only be accessed in terms of their
public interfaces (lots of “‘get” and ‘set’ methods required).

2. There is no evidence in the class body itself that the operators have been overloaded
for “Person’ objects. This does not help the readability of the code.

We can overcome both of these problems by making the operators “friend functions’. A
‘friend” is a function (or method, or class) that is not actually a member of a given class,

323

17 Persistent objects, streams and files

but nevertheless has direct access to its attributes, just as if it was a member. A function
is declared as a friend simply by putting it in the class body, preceded by the keyword
‘friend’. In the next example, the operators are friends of class ‘Box’, and appear in the
class body like this:

friend ostream& operator << (ostream& out, Box& box);
friend istreamé& operator >> (istream& in, Box& box);

Using delimiters in the file

When we write data to a file, we have to format it in such a way that it can be easily read
back in again. Since input stream objects are naturally whitespace delimited (that is, a
space is seen as a separator between two items of data) we can write out object attributes
to a file separated by spaces, and easily read them in again.

In the “showData’ method the attributes are displayed on screen using the ‘setw’ format
specifier.
This is the ‘Box’ class:

/*
BOX.H definition of the 'Box' class
*/
class Box
{
private:
// a'Box has three integer attributes defining its dimensions
int height;
int width;
int depth;
public:
// methods to set and display the state of the object
void setData();
void showData();
// overloaded '<<' and '>>' operators for use with 'Box’ objects,
// declared as friends to allow them to appear in the class definition
friend ostream& operator << (ostream& out, Box& box);
friend istream& operator >> (istream& in, Box& box);
b
/*
BOX.CPP method definitions for the 'Box’ class
*/
#include <fstream.h> // for all streams, including file streams
#include <iomanip.h> // for the 'setw' format specifier
#include "box.h"
/I method for setting all the data attributes from the keyboard
void Box::setData()
{
cout << "Enter height: ";
cin >> height;
cout << "Enter width: “;
cin >> width;
cout << "Enter depth: ";
cin >> depth;

// method to display all the attributes on screen

void Box::showData()

{

324

17 Persistent objects, streams and files

// note how the 'setw' method is used to format the numeric data
// \t'is used to align the text to tab stops

cout << "Height: " << setw(5) << height;

cout << "tWidth: " << setw(5) << width;

cout << "\tDepth: " << setw(5) << depth << endl;

// overload the output operator ‘<<' for use with '‘Box' objects

/I this example includes the operators as 'friend' functions, which

// allows them direct access to the attributes of the 'Box' object

/[a space is output between each aftribute as a delimiter to enable

/I us to read the data back in correctly

ostream& operator << (ostreamé& out, Box& box)

{

// output the attributes to the stream, and return it to allow chaining
out << box.height << " " << box.width << " " << box.depth << endi;
return out;

}

// overload the input operator '>>' for use with 'Box' objects. having

/I also declared this function as a 'friend’ of class Box we have direct

// access to the attributes. for input, this avoids having to read data

/ into temporary variables and using 'set' methods

istream& operator >> (istream& in, Box& box)

{

/l because the input stream is delimited by whitespace, we can

// input all three attributes at once
in >> box.height >> box.width >> box.depth;

// return the stream to allow chaining
return in;

}

The following program demonstrates the ‘Box” data being written to and read from a file,
with the attributes of one array of boxes being used to set the attributes of a second array.
This underlines the fact that it is not the object identity that is being made persistent,
simply the object’s state data. Notice that in this program the same file is used for both

output and input.
/‘k
BOXMAIN.CPP program to test the file streaming of 'Box’ objects
*/
#include <fstream.h> // for all streams, including file streams
#include "box.h"
void main()
{
// instantiate 5 boxes
Box boxes[5];
// instantiate an 'fstream’ file object and open the file for /O,
// replacing any previous data in the file
fstream io_file;
io_file.open("BOXES.DAT", ios::trunc | ios::in | ios::out);
/I setthe 'Box' attributes and write them out to file
for(inti=0; i < 5; i++)

boxesli].setData();
io_file << boxes]il;

// reset the file pointer to the beginning of the file
io_file.seekg(0);
// instantiate a new 'Box' array, read the cube data back in from file and

325

17 Persistent objects, streams and files

// display. although these boxes have a different identity, their state is
// the same as the original boxes
Box new_boxes[5];
for(i = 0; i < 5; i++)
{
io_file >> new_boxesli];
new_boxes[i].showData();

// the file will automatically close when it falls out of scope

}

Running the program, we are asked to enter the dimensions of the first five boxes:

Enter height: 100
Enter width: 150
Enter depth: 200
Enter height: 3
Enter width: 4
Enter depth: 5
Enter height: 23
Enter width: 45
Enter depth: 67
Enter height: 12
Enter width: 11
Enter depth: 1
Enter height: 44
Enter width: 55
Enter depth: 33

At this point, the data file has been written; ‘boxes.dat” will contain the following data,
with the three attributes of each object separated by spaces:

100 150 200
345

23 45 67
12111

44 55 33

The program then reads this data back into a second array of ‘Box” objects that display
their attributes on the screen:

Height: 100 Width: 150 Depth: 200
Height: 3 Width: 4 Depth: 5
Height: 23 Width: 45 Depth: 67
Height: 12 Width: 11 Depth: 1
Height: 44 Width: 55 Depth: 33

A further example: handling data with embedded
spaces and methods for siream handling

This example explores some more aspects of streaming object data to and from a file,
principally handling data that contains embedded spaces, and using stream handling
methods that are true members of the class.

326

17 Persistent objects, streams and files

Streaming data with embedded spaces

When the data for “Box’ objects was streamed to and from file, using the space as the
delimiter was an appropriate means of separating out the numeric attribute values. Since
numbers do not have embedded spaces, they are easy to handle. We encounter difficul-
ties, though, if we need to handle data that does contain embedded spaces. In the next
example, objects of the ‘DirectoryEntry” class (representing entries in a telephone direc-
tory) have three attributes that may all contain spaces; name, address and telephone
number. To ensure that this data can be successfully read from file, we must use the
version of ‘get’ that reads in all characters until a terminating character, rather than the
space delimited extraction operator. You may recall that the default terminating char-
acter is the newline ("\n’) character. So that the data can be read back form the file using
“\n’ as the terminator, each attribute is written on a separate line in the file. An alterna-
tive strategy would be to use some other separator character between each attribute.

Methods for stream handling

In previous examples, we have seen two ways of overloading the stream operators:

1. Separate functions taking objects of the class as a parameter and interfacing with
their public methods. These cannot appear as members of the class.

2. Separate functions declared as friend functions and accessing the parameter object’s
private attributes. These appear in the class but are not actually methods of it, which
to some extent breaks encapsulation.

Neither of these is ideal. An alternative approach is to provide the class with its own
methods that take stream objects as parameters. This means that the methods are proper
members of the class rather than just friends, accessing private attributes without
compromising encapsulation. These methods can still be used by overloaded operators
if required, as well as being useable with any objects of stream classes. The
‘DirectoryEntry’ class (modelling entries in a telephone directory) has two such
methods, ‘readFrom’ and ‘writeTo”:

void writeTo(ostream& out);

void readFrom(istream& in);
The parameters passed to these methods can be either objects of the ostream or istream
classes (e.g. ‘cout’ or ‘cin’) or equally objects of the file stream classes, ofstream and
ifstream.

In this example, the DirectoryEntry class is used in two separate programs; one that
creates objects and stores their attributes in a file and another that retrieves this data to
recreate the objects.
This is the class definition:
/*
DIRENTRY.H Class definitions for the 'DirectoryEntry' class, to demonstrate object
streaming methods and handling data with embedded spaces.
i
// the 'DirectoryEntry' class has methods to write to and read from streams.
#include<fstream.h> // for all streams, including file streams
class DirectoryEntry
{
private:
char name[20];

327

17 Persistent objects, streams and files

328

char address[25];
char telno[15];
public:
void setData();
void showData();
void writeTo(ostream& out);
void readFrom(istream& in);
I
/*
DIRENTRY.CPP Method definitions for the 'DirectoryEntry’ class
*/
#include <string.h> // for 'strncpy’
#include "direntry.h"
/I methods for setting and displaying all data
void DirectoryEntry::setData()
{
// local variable to clear the terminating character from the input stream
char temp_char;
cout << "Enter name: ";
// get the name from the stream
cin.get(name, 20);
/I clear the \n' from the stream
cin.get(temp_char);
// and the same for the other inputs...
cout << "Enter address: ";
cin.get(address, 25);
cin.get(temp_char);
cout << "Enter Telno: ";
cin.get(telno, 15);
cin.get(temp_char);

// display the entry on screen (on a single line, separated by tabs)
void DirectoryEntry::showData()
{

cout << "Name: " << name;

cout << "\tAddress: " << address;

cout << "\fTelno: " << telno << endl;

// method for writing out attributes as separate lines. the parameter
// object class is 'ostream’, but it may also be 'ofstream' in practice
// because 'ostream’ is a base class of 'ostream’. this means that this
// method can be used to write to either screen or output file stream
void DirectoryEntry::writeTo(ostream& out)
{

out << nhame << endl;

out << address << endl;

out << telno << endl;

// method for reading back lines representing individual attribute
// values. again, although the parameter is of the 'istream’ class,
// it can equally apply to ‘ifstream’ objects, to allow input from
// either keyboard or input file stream
void DirectoryEntry::readFrom(istream& in)
{
// local variable for the terminating character
// (same principle as the 'setData’ method)
char temp_char;
in.get(name, 20);

17 Persistent objects, streams and files

in.get(temp_char);
in.get(address, 25);
in.get(temp_char);
in.get(telno, 15);
in.get(temp_char);

}

This program writes objects of the ‘DirectoryEntry’ class to file, using the stream
handling method ‘writeTo’. The parameter is an object of the “ofstream’ class.

/*
DIRCTOUT.CPP Program to write 'DirectoryEntry’ object data to file
*/
#include "direntry.h"
void main()
{
/ instantiate five directory entry objects
DirectoryEntry phone_book[5];
/' set their attributes
for(inti = 0; i < 5; i++)

{
}

// open an output file stream object
ofstream out("DIRECTRY.DAT");
// write the objects to the file
for(i=0; i < 5; i++)

phone_book[i].setData();

/I use the file object as the parameter to the 'writeTo' method
phone_book(i].writeTo(out);

// close the output file (in fact this would be automatic as 'out' falls out
// of scope and its destructor is called)
out.close();

}
After a test run of this program the data file (“directry.dat’) might look something like
this. Notice how the file is “long and thin’ compared to the ‘boxes.dat’ file because the
newline character is being used as the terminator for each individual attribute. Each
object therefore writes three separate lines to the file:

John Jones
10 High Road
234 456

Joan T Smith
12 Newlands
134 456
Archimedes
Parthenon
111

Simon Says
100 Old Ave.
223 444
Harry Harris
14 New Street
23 2341

329

17 Persistent objects, streams and files

This program uses the stored attribute data in the file to recreate the ‘DirectoryEntry’
objects instantiated in the previous program. Thus the objects appear to be persistent

between runs of the two programs.

/*

DIRECTIN.CPP Program to read DirectoryEntry object data from file
*/
#include "direntry.h"
void main()
{
// instantiate 5 entries

DirectoryEntry phone_book[5];
// open an input file stream object

ifstream in("DIRECTRY.DAT");
// check that the file has been opened successfully

if(in)

{ N
// read the attribute data back in from the file, use it to set the states of
// the objects and display their attribute values

for(inti=0; i < 5; i++)
{
// as in the previous program, the streaming method of the class is used:
phone_book[i].readFrom(in);
phone_book]i]l.showData();

}
}
else
{

cout << "unable to open file" << endl;

// the input file will automatically close when it falls out of scope

}
The screen output from the program shows that the file data has been read into the
objects:

Name: John Jones Address: 10 High Road Telno: 234 456

Name: Joan T Smith Address: 12 Newlands Telno: 134 456

Name: Archimedes Address: Parthenon Telno: 111

Name: Simon Says Address: 100 Oid Ave. Telno: 223 444

Name: Harry Harris Address: 14 New Sireet Telno: 23 2341

Using overloaded operators with stream handling methods

Although the ‘writeTo” and ‘readFrom’ methods provide all the functionality of over-
loaded operators, it may be useful to also have these operators available for our classes.
This is very easily achieved. All we have to do is to implement overloaded operators that
call our own object methods. We would add the function prototypes to the header file as
normal; not as ‘friends’ here because we already have methods in the class, but as sepa-
rate functions. Then we can define the operators as simple calls to our own methods.

// the overloaded insertion operator calls the ‘writeTo' method
ostream& operator << (ostreamé& out, DirectoryEntry& entry)

{

entry.writeTo(out);
return out;

330

17 Persistent objects, streams and files

// the overloaded extraction operator calls the ‘readFrom’ method
istream& operator >> (istream& in, DirectoryEntry& entry)

{ entry.readFrom(in);
return in;
}
We now have the option of using either our own methods or the overloaded operators.
We could replace the following line from the first program:

phone_book[i].writeTo(out);
with this:
out << phone_book[il;

and the effect would be exactly the same. Similarly, in the second program we could
replace:

phone_book[il.readFrom(in);
with:
in >> phone_book(il;

In these examples, we have seen different ways in which the attribute data of objects
may be stored in a file, and how this data may be used to recreate the objects. This allows
us to have objects which at least appear to persist between different runs of the same
program, and between different programs which have access to the same class defini-
tions. The syntax used here is not very elegant, since it relies on the small set of standard
iostream / fstream facilities which are mentioned by Stroustrup. Specific compilers will
no doubt provide a wider range of classes and methods to enhance the stream and file
handling processes.

Summary of key points from this chapter

1. Objects may need to persist beyond a single program run time, perhaps between
different programs.

2. Storing objects is difficult because both data and processes need to persist, ideally
together.

3. Object data can be stored in traditional file formats, but an object-oriented database
is a preferable storage medium since it maintains the integrity of objects.

4. Object-oriented databases store objects “‘whole’, and come in two main types — those
which are relational but have an object ‘shell’, and those which are fully object-
oriented.

5. File handling in C++ is done via streams, which are also used for keyboard and
screen 1/ O with similar syntax.

6. The stream classes are in a hierarchy based on the ‘ios” class. This and its derived
classes provide the objects, methods and overloaded operators necessary for I /0.

7. To handle objects of our own classes in stream 1/O, we can overload the “istream’
and “ostream’ operators to work with user-defined types, or create our own file
handling methods. Attributes may be written out as fields in larger records or as
single data records.

331

17 Persistent objects, streams and files

Exercises

1.

332

Overload the insertion operator to output objects of the ‘Point’ class (from
Chapter 11, page 192). Test that it works with a “main’ function.

The ‘Person’ class described in this chapter is used with an overloaded insertion
operator that includes text labels for output and an overloaded extraction operator
that includes prompts for user input. Clearly these operators will not work with file
streams. Modify the operators so that they can be used with file streams by removing
the prompts and labels. Test the operators with a main function that writes a ‘Person’
to file and reads the attribute data back into a second ‘Person’ object.

Given that the demands of console i/0 and file i/ 0 are somewhat different, we might
use overloading to provide more than output stream method for a class, for example:
void streamOut(ostream& out);
void streamOQut(ofstream& out);
Using the technique suggested above, provide two versions of a stream output
method for the “Point’ class; one including text labels that can be used for screen
output (using an ‘ostream’ parameter) and one that only writes the attribute values
for output to a file (using an ‘ofstream’ parameter).

Add insertion and extraction operators as ‘friends’ of your ‘String’ class (from
Chapter 11, exercise 5). Because a string has only one attribute, a single implementa-
tion should suffice for both console and file I/0.

18 Object-oriented analysis and design

Overview

This chapter introduces some approaches to analyzing and designing an object-oriented
system. The fundamental elements of design methods are summarised, and a number of
different activities within the overall analysis and design cycle are identified. A simple
example using notation from Rumbaugh, Booch and Jacobsen’s ‘Unified Modelling
Language’ (UML) is worked through from design to implementation.

“The screw’

‘If you concentrate on it, think about it, stay stuck on it for a long enough time, I would

guess that in time you will come to see that the screw is less and less an object typical of

a class and more and more an object unique in itself. Then with more concentration you

will begin to see the screw as not even an object at all but as a collection of functions...you

aren’t interested in what it is...you are interested in what it does and why it’s doing it
from ‘Zen and the Art of Motorcycle Maintenance’ by Robert Pirsig.

The need for analysis and design methods

In the first chapter we discussed the software crisis and the need for some means to
handle the development of large and complex systems. Object-oriented programming
alone is not enough; it has to be used in the context of a coherent overall design which
can integrate all the objects identified in a system together. Indeed, object-oriented
programming alone can only add to the problem if it is not applied in the context of a
semantically appropriate systems analysis. We need object-oriented analysis and design
methods because we could not to create large and complex object-oriented systems
without them:

“The distinguishing characteristic of industrial-strength software is that it is intensely
difficult, if not impossible, for the individual developer to comprehend all the subtleties
of the design. Stated in blunt terms. the complexity of such systems exceeds the human
intellectual capacity....we may master this complexity, but we can never make it go away’

[Booch 1994, p.4]

We can only master complexity by putting it into a formal framework that allows us to
concentrate on small parts of a system while being confident that each part will relate
appropriately to the other system components.

One problem with trying to introduce these methods is that they are difficult to contex-
tualise when using very small scale examples:

“There is a tendency for the textbooks on OOD to describe systems in which identifying

the objects is very easy, or at least to present the description of a design in such a way that

it is made to look easy’ [Blair et al p. 220]
The example in this chapter is no exception, so it is wise to remember that ultimately we
need methods because real problems are not so easy to solve.

333

18 Objectoriented analysis and design

Components of an object-oriented analysis and design method

While there are many different methods for object-oriented analysis and design, they all
have to address the fundamental components of all object-oriented systems. Any
method must address (at least) the following;:

Identifying objects.

Identifying classes (classifying the objects).

Defining object behaviours (methods).

Structures using generalisation and specialisation (inheritance).
Structures using aggregation (composition, containers).

Object state representation (attributes, and events that change state).

A A S A

Message passing between objects (association and visibility).

The means we use to tackle these problems can vary between methods, and there are two
schools of thought; one that stresses the behaviour of objects (e.g. Wirfs-Brock, Gibson et
al) and another that stresses state (Rumbaugh et al). This divide between the ‘responsi-
bility centred” and “data centred” approaches mirrors in some ways the traditional divide
between process driven and data driven structured methods. However, there are many
common elements between the approaches advocated by different authors, and users
can often ‘mix and match” elements of different methodologies.

The difference between analysis and design

One of the claims which is made for object-orientation is that it smooths the transition
between analysis and design, and between design and implementation. Coad and
Yourdon in their analysis and design texts use a simple ‘chasm’ diagram to imply that in
traditional approaches, each of these three stages is discrete, to the point where the tran-
sition from one to another is difficult (Fig. 18.1).

Analysis Design Implementation

Fig. 18.1: “Chasm’ diagram adapted from Coad and Yourdon - traditional analysis
and design techniques make it difficult to move from one phase to another.

With an object-oriented approach, the analysis and design cycle can be seen as a single
process, albeit one which has different concerns at different levels of detail. We may
contrast traditional analysis and design approaches which use different models at
different stages of development with the object-oriented approach which progressively
expands the same model of a system. Booch talks about the process as being a ‘round-
trip gestalt’, a continuous iteration through the stages of analysis and design, including
the use of prototyping and refinement of the existing design as necessary.

334

18 Objectoriented analysis and design

In object-oriented analysis, we are attempting to create a model of the problem by iden-
tifying the objects (and by extension the classes) which exist in the problem domain. In
the design phase, we are defining how these abstractions can be made to exist and
interact in software by creating an overall framework for the system. Depending on the
scale of the problem, these activities may merge into a seamless process.

‘For small to medium projects there often is no distinction made between analysis and
design: These two phases have been merged into one. Similarly, in small projects there
often is no distinction made between design and programming’

[Stroustrup, 1995 p.368]

Classifying objects

Since the first step in any analysis must be to identify objects which must belong to
classes, then the way in which classification is done is important. As Booch explains,
there are only three general approaches to classification [Booch, 1994, pp.150-155]:

1. Classical categorization.
2. Conceptual clustering.
3. Prototype theory.

In all three we look for common properties and behaviours, but in increasingly abstract
ways. In classical categorization for instance It is important that the properties of objects
are measurable, so that it is clear to which category an object belongs, but conceptual
clustering involves less easily measured similarities (style rather than content perhaps).
Occasionally we come up against abstractions which cannot be clearly defined either in
terms of their properties or concepts. A game is an example of this — what exactly defines
a game? This is the area of prototype theory, where we can only look for ‘family resem-
blances’ between one abstraction and another. All forms of categorisation are, of course,
always going to be domain specific, since nature does not categorise; it is purely a
human activity which attempts to make sense of our environment. Therefore something
which is a valid category in one context may not be in another.

The relevance of these theories to object-oriented analysis is the connection between
levels of abstraction in classification theory, and levels of abstraction in classification
hierarchies. The more abstract the classification, the higher up the hierarchy it is likely to

appear.

Identifying classes

When we come to analyze an object-oriented system we have to identify the classes and
objects in the problem domain. This is not always a simple task;

‘Some of the classes and objects we identify early in the life cycle will be wrong, but that
is not necessarily a bad thing’ [Booch, 1994 p.237]

When we analyze a system, we will make immediate assumptions that may need to be
re-appraised later. Therefore it is important that any assumptions we make about the
classification of objects are identified and, if necessary, challenged. Remember that our
final model of the system is not necessarily right or wrong, but simply one way of
analyzing the problem. Any classifications we apply might equally be replaced by
different but equally valid ones. Certainly when we reach the later stages of design and
maybe have to decide whether to use classes in complex hierarchies, delegations, mixins

335

18 Objectoriented analysis and design

and aggregations, then we may well find that a number of different classifications are
possible.

Defining system boundaries

The first step in any analysis must be to define the system boundaries, to exclude from
our design any aspect of the overall application which is not directly part of the system.
A ‘user’ is a typical example of an ‘object’” which is clearly outside the system we are
trying to build. Although we will need to be aware of the messages being sent to and
from a “user’, there is no reason to model the user as an object (an exception to this
general rule is the “actor’ class described by Jacobson [Jacobson, 1993 p.129], but such
classes are specifically intended to model behaviours outside the main system.) Before
we can begin to successfully analyze a system, we should understand that some of the
‘objects” which we talk about in the analysis are external and will therefore not become
objects in the implementation.

Domain analysis

Given that one of the primary elements of an object-oriented design method is to encom-
pass re-use, it is important that this aspect should be emphasised at an early stage.
Whether or not we are able to reuse software components at the implementation stage,
there is no reason why reuse should not be applied at the analysis and design stages.
Domain analysis simply a detailed study of the problem area. One aspect of this involves
looking at similar systems to the one we are analyzing and finding out what objects have
been identified in them. Since there are not so many different types of application, the
chances of finding a useful precedent are quite high. It would be re-inventing the wheel,
for example, to approach a bank cash machine application without reference to the many
existing similar systems. Other sources of information may be developers, users and

libraries. A domain analysis might take the following steps [Booch 1994, p.157]:

1. Consult with domain experts to get a general model of the system. A ‘domain expert’
is not necessarily a software engineer but someone who knows the application area,
perhaps as a user. A domain expert in cash machine systems might simply be
someone who spends a lot of cash!

2. Look at existing systems in the problem domain.
3. Compare existing systems for similarities and differences.
4. Refine the original model in the light of this comparison.

How much access we might have to existing systems depends on a particular context.
Some developers may have access to other similar applications written in the same
company or organisation, in which case a great deal of information can be accessed. In
other cases, very little domain information may be available.

Domain analysis does not have to depend on information supplied by people — written
sources can be equally useful. Coad & Yourdon recommend the following approach:

‘Go to Encyclopedia Britannica’s Macropedia for a 10-12 page professionally-written
description of the problem space under consideration; this is an excellent way to learn the
terminology and fundamentals of a topic’ [Coad, Yourdon, 1990, p.61]

We can also make a distinction between vertical and horizontal domain analysis. Vertical
domain analysis means looking across similar applications (as above). In contrast, hori-

336

18 Obijectoriented analysis and design

zontal domain analysis means finding similar abstractions within a single application, so
that we can understand the common elements between them, such as identifying the
similarities between all the different reports in an accounting system.

At the detailed design stage, we may usefully study design patterns, such as those docu-
mented by [Gamma et al, 1995] that may provide reusable approaches to designing
various elements of the system. The Unified Modelling Language (UML) integrates such
patterns into its notation.

Actors and use cases

Many object-oriented analysis methods start from the problem statement, but do not
suggest how that problem statement might be arrived at. Therefore we need to be aware
of how to approach requirements analysis from an object-oriented perspective. A useful
approach is the ‘use case’ model (originally described by Jacobson and now part of the
UML method) which is based on scenarios provided by ‘actors’ at a very early stage of
the analysis and describes what the system is intended to do. An actor represents some-
thing outside the system which interacts with it, and is generally a role adopted by an
end-user. These scenarios are then analyzed using ‘storyboards’ to identify the objects in
the system, their responsibilities and how they collaborate with other objects.

Class, Responsibility and Collaboration (C.R.C.) cards

A similar approach to the use-case storyboard is the CRC card, used by a number of
authors including Wirfs-Brock and Beck & Cunningham. CRC stands for ‘Class/
Responsibility / Collaboration’, and is a useful way of ‘brainstorming’ the application. A
CRC card is simply an index card or sticky note divided into three sections: the name of
the class, its responsibilities and its collaborators (Fig. 18.2). A responsibility is written as
a short verb phrase containing an active verb, such as ‘turn on the pump’, or “print the
account balance’. A collaborator is an object that will send or be sent messages when
responsibilities are carried out (perhaps ‘pump’ as the receiver of the message “turn on’).

C.R.C. (Class, Responsibility & Collaboration) Card

Class: AIRCRAFT

Responsibilities: Collaborators:
Take Off Airport
Land Pilot

Fig. 18.2: A typical CRC card. Layout (and media) may vary,
but the fundamental information remains the same.

Because CRC cards can be moved around, torn up, replaced and written on, they are a
very flexible tool for analysis. Developers can ‘anthropomorphise’ the behaviours of
objects by ‘becoming’ a particular card and walking through scenarios.

‘Tt is not unusual to see a designer with a card in each hand, waving them about, making
a strong identification with the objects while describing their collaboration’
[Beck & Cunningham, 1989 p.3].

337

18 Object-oriented analysis and design

By defining what an object does, and when it needs to do it, we can begin to define the
required behaviours (methods) of an object, and the contexts in which it needs to send or
receive messages to and from other objects. The use of CRC cards can be easily inte-
grated into other methods, alongside, for example, text analysis (described later).

The approach also allows cards to be physically arranged so that inheritance and aggre-
gation hierarchies begin to arise naturally from the physical location of cards. Cards
representing closely collaborating objects can be overlapped, parts of an aggregation can
be arranged below the enclosing object, and generalisations at the higher levels of a hier-
archy can be placed at the top of a pile of cards containing the specialised objects. Again,
detail is added to the design by acting out scenarios identifying object behaviour in
particular situations.

Interviewing

One important aspect of analysis, particularly in the context of domain analysis, is the
interviewing of users of the system. One method which lays emphasis on this phase is
‘Object Behaviour Analysis” [Gibson, 1990]. This approach stresses the way in which
interviewing should be handled, particularly to identify behaviours important in the
system. Strategies such as using open rather than closed questions, avoiding multiple
choice in favour of simple one-part questions and ‘active listening’ (clarification and
summarisation of answers) are all recommended. Throughout the analysis, the impor-
tance of identifying behaviour rather than state is emphasised, partly to overcome a
natural inclination to do the opposite;

‘Looking into the research on how people form concepts and categories showed that the
aspect of objects that people notice most readily has to do with state’
[Gibson 1990 p.250].

High level scenarios known as ‘scripts’ are used to walk through typical system
interactions with the interviewees, recording actions and results. As part of this process,
the agents and recipients of behaviours and messages are also identified. After notating
some initial behaviours of the system, and the objects performing them, OBA uses
‘modelling cards’ (basically the same as CRC cards) to begin modelling the objects
themselves.

Text analysis

A general approach first suggested by Abbott [Booch, 1994 p.159] is the textual analysis
of a problem description. This approach is used as part of a number of methods, since it
can be done early in the analysis phase. All that is required is some kind of initial
problem description which some authors suggest may be as small as a single paragraph.
The initial problem description may have been arrived at by some other analysis tool,
such as interviewing, or may simply be a specification provided by a domain expert or
end-user. Rumbaugh emphasises that the problem description should be:

‘a statement of needs, not a proposal for a solution...The problem statement is just a
starting point for understanding the problem, not an immutable document’
[Rumbaugh et al, 1991 p.150].

In a text analysis, any nouns identified correspond to objects or attributes, and verbs
correspond to associations or operations (Fig. 18.3). An ‘operation’ in the analysis phase

338

18 Objectoriented analysis and design

is what we call a method in the implementation; strictly speaking, a method is the imple-
mentation of an operation.

A much deeper textual analysis than the simple ‘noun vs. verb’ approach is possible, but
to some extent limited by the vagaries of English (Ian Graham [Graham, 1991] suggests
that Chinese might be a better tool for this kind of analysis!). One problem is that, as
Booch says, ‘any noun can be verbed, and any verb can be nouned’ [Booch, 1994 p.160]. We
might equally find the verb phrase ‘to report” or the noun phrase ‘a report” in a problem
description referring to the same thing, so is it an object or an operation? This potential
ambiguity might seem to invalidate the process entirely, but it is a useful first step in
identifying candidate objects and their behaviours, perhaps to build into some initial
scenarios for use with CRC cards or use-case storyboards.

/—*F Objects

————1p Nouns
Problem _4» Attributes

Statement

Associations
———p Verbs
L» Operations

Fig. 18.3: A text analysis derives objects, attributes, associations and
operations from the nouns and verbs in the problem statement.

Identifying abstractions

There are, as Booch notes, two processes in the identification of the abstractions in a
system; “discovery” and ‘invention’ [Booch 1994, p.162]. Discovery is the identification of
objects that are found in the problem domain, perhaps referred to by domain experts and
whose descriptions are part of the problem itself. In contrast, we have to invent other
abstractions, those that allow us to implement the solution. We might say that we
discover objects in the analysis phase and invent objects in the design phase. As we
noted in the very first chapter, Stroustrup refers to “artifacts of the implementation’,
objects like databases, stacks and screen managers that belong to the application rather
than the problem.

What is an abstraction?

It is easy to think of objects as ‘things’, but of course only some of the objects in an
analysis turn out to be ‘things’ in the real world, which is why the term “abstraction’ is
perhaps rather more appropriate than ‘object’.

‘Many of the objects in an OO design do not correspond to any thing in the real world. A
mouse button click is not a thing; neither is a transaction. What about a print buffer, an
event dispatcher or an interaction mode?’ [Blackwell, 1993 p.30].

What we are doing is modelling behaviours of a system at different levels of abstraction,
and many of these behaviours are to do with the way computers work rather than appli-
cation domain objects. As we move from the initial analysis to design, we may find that
the abstractions we are working with move from real world objects to user interface
components (windows and other similar components, but also smaller elements of the
display such as single data fields) to low level abstractions which manage or implement
all the other parts of the program. These abstractions are ‘invisible’ to the user; they do

339

18 Obiject-oriented analysis and design

not appear on the screen and do not persist outside the program, but at some point must
be identified, either for creation or reuse from existing components. Many of these may
be low level ‘building blocks’ (re the ‘system interface layer” of Corbett’s class frame-
work described in Chapter 9) which devolve responsibility for managing object compo-
nents to the components themselves.

Refining abstractions

Once an abstraction has been identified, it must be refined until its behaviours and role
in the overall system have been clearly defined. Any object we identify will have to be
seen in relation to other abstractions, in terms of class hierarchies, associations and
aggregations. Given that some classes are abstract, and simply exist to provide generali-
sations of other classes, the appropriate level of abstraction must be found. A class that is
too abstract may lead to large differences between it and the next level down in the hier-
archy. In contrast, classes that are too specialised may lead to duplication and redun-
dancy. In the end, the ‘granularity” of abstractions (i.e. how big each class should be) is
based on the best models available for high cohesion and low coupling. In addition to
these two qualities (discussed in Chapter 1) we might also consider three others [Booch,
1994 p.138]:

Sufficiency: Does the abstraction do enough to be sufficient for its purpose?

Completeness: Does its interface cover enough aspects of the abstraction for it to have
common usage?

Primitiveness: Do all aspects of its interface have to access the underlying representa-
tion in order to be implemented?

The optimum level for all of these characteristics is to a degree subjective. Ultimately,

developers have to apply their own judgement.

Naming conventions

One important aspect of refining abstractions is to name them appropriately. As Beck &
Cunningham state ‘The class name of an object creates a vocabulary for discussing a design’
[Beck & Cunningham, 1989 p.2]. Clearly, if an inappropriate name is chosen then this
may cause problems in understanding the role of that class in the system and in relation
to other classes. This principle applies right through from the initial naming of classes to
the design and implementation stages. At a lower level of detail, Booch suggests the
following approach to naming all aspects of classes and objects [Booch, 1994 p.164]:

1. Name objects with proper nouns
e.g. the_bank_branch, the_checkout, fuel _tank, etc.

2. Classes should be named with common nouns
e.g. BankAccounts, GraphicsObjects, FuelTanks, etc.

3. Modifier methods should be named with active verbs
e.g. draw, fillTank, applyBrakes, setColour, etc.
4. Selector methods should imply a query, or named with verbs of the form “to be’
e.g. currentFuelLevel, isEmpty, getBalance etc.
Following these or similar guidelines should ultimately lead to more readable code
which relates easily to the design, e.g.

340

18 Obiject-oriented analysis and design

FuelTanks fuel_tank;
if(fuel_tank.isempty())

{
fuel_tank.fillTank();

I ete.
}
You might have noticed that this convention has not been entirely followed in this book
in that class names are singular rather than plural. After all, you should not take every-
thing that methodologists say as gospel!

Names are particularly important when deciding on the semantics of inheritance and
aggregation. If the names of our classes in an inheritance hierarchy do not easily suit the
‘is a kind of” relationship, then we need to decide if either the names or the hierarchy
may be inappropriate. To suggest a simplistic example, we might have a class called
‘Rectangle’ inheriting from a class called ‘Line’. However, the statement ‘a rectangle is a
kind of line” does not read too easily. Perhaps we need an intermediate class called
‘Polygon’, and another more abstract base class called ‘GraphicsObject’ from which both
it and ‘Line” inherit. Clearly, the appropriate model depends on the requirements of the
problem, but thinking about names in this way can help to clarify the issues involved in
defining abstractions.

Similarly, if an aggregation does not easily fit with an ‘a part of” description, then again
either the names or the structure may need revision. Relationships which have been
modelled as aggregations but are better expressed as associations (or vice versa) might
be revealed by such analyses. To say that “a trailer is a part of a lorry” might appear valid,
but we may find that in fact different trailers and tractors combine together at different
times to make a ‘Lorry” and that both tractors and trailers are objects in their own right.
Again, we might need to rethink either the names of the classes, or their roles in the
aggregation/association, or both.

Associations and mechanisms

Objects that do not send messages to each other cannot combine to create a useful
system, so the associations that provide the routes for these messages are a crucial part of
the analysis and design. Booch uses the term ‘mechanisms’ to describe the way that
objects collaborate together to provide some high level behaviour required by the
system. Without mechanisms, a software system has no organisation, so it is important
that the developer is able to identify situations in which objects must collaborate. These
can be analyzed via scenarios, identifying which objects collaborate in a particular
process and which methods each object requires in order to do so. The UML provides us
with a series of tools for this process, described in the case study that follows this
chapter. Although there are some differences in emphasis between methodologists in the
way that these links between objects are defined (some stressing behaviour, some
stressing state), they must ultimately provide the means for objects to communicate with
one another.

Summary of key points from this chapter
1. Object-oriented programs of any scale require object-oriented analysis and design.

2. Many methods exist, some stressing behaviour and some stressing state. However,
they all have many common aspects.

341

18 Obijectoriented analysis and design

3. The transition from analysis to design is to an extent a seamless process, but analysis
is in general terms looking at the problem, and design is providing a framework for
the solution.

4. Analysis methods often centre on interactions with the system, identified in domain
analyses and described in scenarios and “use cases’.

5. One of the key activities in analysis is classifying objects. A number of techniques
may be applied to this process including text analysis and CRC cards.

6. Having defined abstractions (objects) we have to look at the way they interact with
each other in associations and / or mechanisms.

7. As well as a static model of objects in the system, we have to model them dynami-
cally over time to define the sequences of the messages which pass between them,
and the events which change their states.

Case study: a UML design

The Unified Modelling Language (UML) is primarily the work of Rumbaugh, Booch and
Jacobson who joined together in 1995 to produce a single object-oriented modelling tool.
The UML version 1.0 was published in January 1997 and a subset of it is used as the basis
for the notation in the case study. The process described, however, is still to some extent
based on Rumbaugh’s original method [Rumbaugh et al, 1991].

This case study is intended to convey some of the basic steps involved in an object-
oriented analysis, design and implementation. It is, of necessity, extremely simplistic, but
allows us to work through some of the key stages in the analysis and design cycle. The
scenario is based on a rather simplified electronic course prospectus system. A few
sample stages of the design process are demonstrated, though this is not intended to be
a full lifecycle and many design elements are not included.

The initial problem statement

We might assume that the initial problem statement has been derived from some kind of
domain analysis involving interviews with domain experts and end users. As it stands,
it contains relatively little detail but provides us with a basis for some initial analysis.

As part of the college’s LT. strategy, the “electronic prospectus’ is intended to provide a
means of viewing course information for staff, students and managers.

Courses at the college comprise a number of units at two levels, with students normally
taking level one units in the first year of their course and progressing level two units in
the second. Part time students may take two or more years to complete all their units at a
given level. Level one units are assessed on course work grades, but level two units are
assessed with examinations. Some courses also include a compulsory foundation unit
where particular technical skills need to be established.

The system will provide lists of lecturers, courses and units, and access to more detailed
information about which units are taught on which courses. Individual lecturer records
may be queried for information such as their office room number, e-mail address and
subject specialisms, as well as reporting the units that a lecturer teaches. Each course in
the prospectus can be identified by a unique course code, and consists of a number of
units at each level. Every course has one lecturer acting as course leader, who is

342

18 Obiject-oriented analysis and design

responsible for administering that course and updating unit descriptions. Management
functions of the prospectus allow lecturers and courses to be added to or removed from
the system.

Use cases

In order to determine the system boundaries and high level requirements for the system,
a use case diagram is drawn to show the actors in the system and the general services
they require. Use cases come originally from the work of Jacobsen who is one of the three
authors of the UML.

A use case diagram shows the “actors’ as stick people, and the services as ellipses. In this
simple system the actors are managers, lecturers, course leaders and students. The
services of the system come into three general types, ‘view prospectus’, ‘modify
prospectus’ and ‘update unit descriptions’. All actors may view the prospectus but only
managers are able to generally modify it. Lecturers in the role of course leaders can
update unit descriptions. Fig. CS.1 shows the use case diagram.

/

\

Lecturer Student

update unit
description

RN
/
[

Manager update Course Leader

prospectus

Fig. CS.1: A use case diagram showing the actors, use cases and system boundary.

Textual analysis

In a larger system, each use case would be modelled in detail to provide a number of
textual descriptions of the system before attempting a text analysis. For a small example
like this, however, the whole system can be generally described in one document. We
might therefore usefully do a textual analysis of the problem statement to identify candi-
date objects, associations, operations and attributes. In order to find candidate objects,
we look for nouns (or noun phrases) in the problem statement. A noun phrase may be a
name consisting of more than one word, or a noun preceded by a verb or adjective such
as “electronic prospectus’ in the problem statement.

Identifying nouns as candidate objects

At this point, all the nouns and noun phrases are underlined. This is a largely mechanical
process, where we are not trying to make value judgements about whether or not these
nouns are likely to be useful object classes in the system:

343

18 Object-oriented analysis and design

As part of the college’s LT, strategy, the ‘electronic prospectus’ is intended to provide a
means of viewing course information for staff, students and managers.

Courses at the college comprise a number of units at two levels, with students normally
taking level one units in the first year of their course and progressing level two units in
the second. Part time students may take two or more years to complete all their units at a
given level. Level one units are assessed on course work grades, but level two units are
assessed with examinations. Some courses also include a compulsory foundation unit
where particular technical skills need to be established.

The system will provide lists of lecturers, courses and units, and access to more detailed
information about which units are taught on which courses. Individual lecturer records
may be queried for information such as their office room number, e-mail address and
subject specialisms, as well as reporting the units that a lecturer teaches. Each course in
the prospectus can be identified by a unique course code, and consists of a number of
units at each level. Every course has one lecturer acting as course leader, who is
responsible for administering that course and updating unit descriptions. Management
functions of the prospectus allow lecturers and courses to be added to or removed from

the system.

List of candidate objects

From our initial analysis of the problem statement, we have a set of nouns and noun
phrases which may or may not be suitable objects. In order to examine them more
closely, we simply list them all, but eliminate all duplications and plurals. We do not,
after all, need to write ‘prospectus’ four times! The list of nouns then looks like this:

College’s I.T. strategy Electronic Prospectus Means

Course information Staff Student

Manager Course College

Unit Level Level one unit

First year Level two unit Second (year)

Part time student Year Course work grade
Examination Compulsory foundation unit Particular technical skills
System List Lecturer

Information Individual lecturer records Office room number
E-mail address Subject specialism Unique course code
Course leader Unit description Management function

Eliminate inappropriate candidate objects

Given that a number of our nouns will not necessarily be appropriate object classes, we
must examine each in turn to see whether or not it should be modelled as a class.
Rumbaugh [Rumbaugh et al, 1991, pp.153-4] suggests a set of criteria for candidate
objects which should be eliminated from the list, as follows:
Redundant classes Where two words mean the same thing, choose the more descriptive.
Irrelevant classes Those which have nothing directly to do with the problem.

Vague classes If classes are not specific enough, they need to be more closely
defined before they can be used.

344

18 Obiject-oriented analysis and design

Attributes

Operations
Roles

Implementation
constructs

Since attributes are described by nouns, we are likely to find a
number of nouns in our list which are in fact attributes of other
objects.

Some nouns are in fact the names of dynamic processes which may
be operations rather than objects in their own right.

Role names are appropriate to the way in which objects interact, but
are not good names for objects.

Any object that is an artifact of the implementation (i.e. is part of the
intended system rather than the problem) should be discarded, or
perhaps renamed. Anything which refers to a data structure for
instance is part of the implementation, but may be replaced by the
name of an object which is being represented by that data structure.

We should also eliminate the ‘actors’ i.e. roles which interact with the system but are not
part of it. These will be important in terms of sending messages to objects, but are not
themselves objects. It is important to note that ‘Lecturer’, although an actor, is also an
object within the system (e.g. a lecturer can view lecturer details).

Eliminated candidate objects

Our lists of candidate objects contains some which may be eliminated on the following

grounds:
College’s LT. strategy
Means

Course information

Staff

External to the scope of the given problem.
Too vague, a general term for the system itself.
Too vague, but specified later.

This is a redundant class, because the staff referred to are in fact
lecturers, which is a more descriptive name.

Student, part time student Irrelevant classes. Students are clients of the system but are not

Manager
College

Level

part of it.
An “actor’, outside the system but interacting with it.
Irrelevant. The college is the client, not part of the system.

Redundant in the sense that the more specific ‘level one unit’
and level two unit’ also appear in the list of candidate classes.

First year, second (year) ~ Redundant. Synonymous in practice with levels one and two.

Course work grade,
examination

Relate to attributes of level one and two units.

Particular technical skills ~ Vague, but implies a set of attributes relating to the foundation

System

List

Information

unit.

This is a redundant class, because it refers to ‘(electronic)
prospectus’, which is a more descriptive name.

List of lecturers etc. may appear to be a noun phrase, but on
closer inspection is a verb phrase. Operations that can provide
these lists should become apparent at the dynamic modelling
stage.

Too vague, but clarified in the rest of the sentence as a set of
attributes specific to lecturers.

Individual lecturer record An implementation construct. From the point of view of the

analysis, it is the same as a ‘Lecturer” object.

345

18 Object-oriented analysis and design

Office room number
E-mail address All attributes of a ‘Lecturer’.

Subject specialism

Unique course code An attribute of courses. May also be used to qualify an
association in the implementation.

Course leader A role played by a ‘Lecturer’.

Unit description An attribute of a unit.

Management function Operations described later in the sentence.

Revised list of candidate objects

Our revised list of candidate objects is shown below. By enclosing them in rectangles, we
are providing the first element of the class diagram. As we know, each object class is
represented in the UML by a divided rectangle showing the class name, attributes and
methods. Having established the names of classes, the attributes and methods may be

added later.
Level one Level two Foundation
unit unit unit

Lecturer

The data dictionary

Having established a set of classes, we should begin to maintain a data dictionary which
describes each class. A data dictionary is simply a textual definition of classes, which
may include such details as scope, associations, attributes and operations. These are
continually developed throughout the analysis and design process. An example data
dictionary entry for the ‘Lecturer” object might appear as follows:

Lecturer A lecturer teaches a number of units and may act as a course leader. Lecturer
attributes include office room number, e-mail address and subject specialisms.

This initial entry will become more closely defined as the object’s role in the system is
further investigated.

Identifying associations

An association occurs where classes depend on, or refer to, one another. Associations are
important because they define the routes for message passing between objects, and
therefore relate to the operations which objects must have to meet their responsibilities.
We can derive a candidate list of associations by identifying verbs and verb phrases in
the problem statement, although this is often less clear cut than identifying nouns. Since
we already have an idea of which objects we are interested in, it is relatively easy to spot
phrases that refer to these objects, and might therefore be associations (including
aggregations):

‘Courses...comprise a number of units’

"Some courses also include a compulsory foundation unit’

346

18 Obiject-oriented analysis and design

"The system will provide lists of lecturers, courses and units’
‘units are taught on...courses’

‘units...a lecturer teaches’

‘Every course has one lecturer acting as course leader’
‘course leader...is responsible for...updating unit descriptions’
‘lecturers and courses...added to or removed from the system.’

From this list, we can see that courses have an aggregation relationship with units and
foundation units. Lecturers associate with units, and some also associate with courses as
course leaders. Some verb phrases are actions rather than associations, such as providing
lists, updating unit descriptions and adding/removing items. These action phrases will
be operations on the class diagram.

Adding associations to the class diagram

These associations can now be added to the class diagram. Each association is repre-
sented by a line between the objects involved, and should be named appropriately. If
roles can be defined for the objects, they should also appear on the association, near the
object to which that role name applies. In this example, the lecturer class has the role
“leader’ in its association with the course class.

All associations should describe their multiplicity (i.e. the number of objects involved in
an association). The notation for multiplicity between classes in the UML is shown in
Fig. CS.2. See also Fig. 9.1. Some associations describe aggregation, in which case the
‘diamond’ notation is used, but multiplicity should be shown both for ordinary
associations and for aggregations.

associated with only one ——— Class
associated with many
Class
(zero or more)
associated with between 0..1
——— Class
zero and one (the range
can be specified between
any two numbers)
associated in one direction al
only (i.e. not implemented ass
from this class)
Class 1 Key Class 2

Qualified association. Class 1 uses the key to identify
individual objects of class 2.

Fig. CS.2: The notation for multiplicity in the UML.
This notation is used for object associations.

347

18 Object-oriented analysis and design

If an association has a ‘many’ side in terms of its multiplicity, then there may be an
appropriate way of specifying how each individual object can be identified. If this is the
case, then it is known as a ‘qualified association’, and is denoted by an appropriate
identifer enclosed in a box applied to the object that uses the identifier (also shown in
Fig. CS.2). In the example, courses have unique course codes that allow them to be
referenced by the prospectus.

Identifying attributes

We already have a few attributes from the problem statement, and some others may be
fairly obvious from our knowledge of the problem domain. However, we should not
place too much stress on finding attributes at this stage, since they exist largely to
support object behaviours, not vice versa. Some attributes are known as ‘derived attrib-
utes’ because their values may be derived from other attributes. A simple example of this
might be the number of units on a particular course, which may be derived by counting
the number of associated “Unit’ objects. Other attributes may be ‘link attributes’, those
that are properties of a link between objects rather than properties of the objects them-
selves. Although there are no link attributes specified in the text description of the
system, it might be appropriate to consider a more detailed system where part time
lecturers are contracted to teach particular units. An ‘hourly pay rate’ might then be
modelled as a link attribute between objects of the ‘Lecturer” and ‘Unit’ classes, since it
would not be appropriate to make it a permanent attribute of either of the two classes.

Refining with inheritance

By looking at the classes in our system, we may find examples where generalisation or
specialisation is possible. In our scenario, there are clearly similarities between level one
units and level two units. Whether a level two unit is a specialised type of level one unit,
or whether level one and level two units are derived types of ‘unit’ depends largely on a
closer investigation of the features of the two types of unit. In the example, we will
model both as derived classes of an abstract ‘unit’ on the rather arbitrary assumption
that their assessment mechanisms constitute different behaviours. In reality we would
need to look a bit more closely at the requirements before leaping to this conclusion!

Fig. CS.3 shows the class diagram with associations (including an aggregation) and
inheritance shown for types of unit. Attributes and operations already identified in the
text analysis are also shown.

348

18 Object-oriented analysis and design

listed in B> Prospectus

add course

add lecturer

list courses

list lecturers
remove course
remove lecturers

course code

] listed in A
%k
v
Lecturer Course
e-mail address leads B 0..1] course code
room number unit count: Integer = 0
subject specialism add unit
remove unit
taught by A
*l ‘ l 0..1

———‘ Unit
| |

Level One Unit Level Two Unit

‘ Foundation Unit ‘

coursework specification exam specification

Fig. CS.3: The class diagram showing associations and their multiplicity,
also aggregations, inheritance and some attributes and operations.

Dynamic modelling

The class diagram gives us a static view of the classes in the system and the relationships
between them, but does not give us any information about how the system behaves
dynamically, i.e. what happens over time as the system runs. Four types of ‘behaviour
diagram’ are available for dynamic modelling in the UML, but we do not necessarily
need to use all of them in a given design. The diagrams are:

s sequence diagrams

e collaboration diagrams

® state diagrams

* qactivity diagrams

Sequence diagrams and collaboration diagrams are different ways of showing the
messages that pass between objects over time. State diagrams show how objects of a
class change state in response to events. Activity diagrams are similar, but more appro-
priate to systems (like vending machines) that change state as a result of internal

processes rather than external events. These diagrams are drawn in conjunction with the
existing use cases to design dynamic processes and refine the class diagram.

349

18 Object-oriented analysis and design

Use cases and operations

Having identified objects, associations and attributes, we need to determine the behav-
iours of the objects in the system by examining what happens to them in various use case
contexts. The following sequence of events can be used in constructing a dynamic
model:

1. Take a single use case.

2. Prepare text based scenarios of typical interactions with their possible alternate
flows.

3. Draw sequence and/or collaboration diagrams for the use case. Sequence diagrams
are better able to represent more complex scenarios, while collaboration diagrams
more closely reflect the class diagram.

4. Draw/update state diagrams for any classes with complex behaviours.

This process, repeated for each use case, should highlight the required behaviours of
objects, and therefore the operations to appear on the class diagram. It also assists us in
designing the processes involved in implementing a given use case.

Modelling a use case

Each use case has an associated text description of the possible events that take place,
including the “alternate flows’ (different events that depend on different circumstances).
Use case scenarios are simple dialogues between users and the system, defined as a
sequence of events. We should start with the ‘normal’ scenario, then move on to more
exceptional cases such as error conditions. The following scenario is a simple ‘normal’
case of a manager adding a course to the prospectus:

The prospectus creates a new course, and asks the manager to enter a code and name for
the course. The prospectus then asks for the identity of the course leader to be selected by
the manager from a list of existing lecturers. The prospectus assigns the course to the
course leader and then a number of units are created and added to the course. For.each
unit the manager enters the unit description and the prospectus assigns the unit to the
course. The process ends when the required number of units has been created and added
to the course.

Alternate flows may then be added to show different sequences of events, such as:

alternate flow:
The manager enters a course code that is already in the system. The manager is asked if
s/he wishes to enter a different code before continuing or to abort the operation.

Similar alternate flows might be added where other constraints are breached, such as
providing the wrong number of units for a course, or assigning too many course leader-
ship roles to a particular lecturer (these are not stated in the text description, but there
would no doubt be many practical constraints to build into the system.) After describing
a number of scenarios, we can summarise this information on one or more sequence
diagrams showing all the messages being passed between the objects. Fig. CS.4 shows a
sequence diagram for this use case, describing the ‘normal’ flow of events. The objects
appear along one axis of the diagram and the time sequence along the other. A dotted
line shows where an object is in existence, becoming a bar where the object has focus of
control. Objects created during the process (course and units) appear at the point where
they are created. Messages are shown as arrows from one object (or actor) to another.

350

18 Object-oriented analysis and design

To show the alternate flows, either the same diagram could be expanded or other
sequence diagrams could be drawn. Notice that the “Prospectus’ class takes the role of a
‘controller’; a class that manages the control interface between the user and the other
objects in the system, not unlike the “Hotel’ object in the example program that follows
Chapter 9.

Manager prospectus : Prospectus i [a_lecturer : Lecturer

H
i
!
addCourse() !

request code : Course {new}

input code Code(!
setCode(c

request name ﬂ
I
I
|
I
I
I
I
I
I
I
I

input name

setName(n)

listLecturers()

request lecturer

select lecturer

setCoursel.eader(l) y—|

T
|
|
I
|
I
I
|
|
|
I
t
!
]
]
]
I
]
t
!
f
i
i
!
i
|
U addCourse(c) D
|
|
|
|
|
|
I
|
|

L

!

* while units | request description]
to be added :
input description |

: Unit {new}

.
:

setUnitDescription(d) |

D setCourse(c)

setUnit(n)

I
T
i
1
i
i
L - :
Fig. CS.4: A sequence diagram showing the messages
passing between objects in the system.

An alternative diagram is the collaboration diagram, which also shows the messages
passed between the objects in the system but relates more closely to the class diagram
(Fig. CS.5). Messages are numbered to show the sequence of events, using ‘nested’
numbers to show where some events are components of more general events (e.g. the
events that together make up “create unit’). To simplify this diagram, the interaction with
the “actor’ is not shown, but it otherwise mirrors the sequence diagram.

351

18 Obijectoriented analysis and design

Manager

14 [i=o.n]: 1.6 * [units < units needed] : Create() —b
1.6.1 : setUnitDescription(d) —

listLecturers(l)
prospectus : : Unit {new}
Prospectus '

1.1 Create()¢

1.2 : setCode(c) #

1.3 : setName(n) ‘

1.5: setCourseLeader(l)*
1.6.2 : addUnit(n) §

a lecturer - | €= 1.5.1 : addCourse(c) 1.6.3 : setCourse(c) —B
= : Course {new}

Lecturer

Fig. CS.5: A collaboration diagram provides an alternative way
of representing the information on a sequence diagram.

State diagrams

Unlike the other dynamic modelling diagrams, a state diagram refers to a single class. A
state diagram is only necessary where the behaviour of objects is complex, and is derived
from the events that refer to objects of that class. We can start with one use case, extract
all the events in it that affect our object, and define how the object’s state is affected by
those events. We can continue this process by adding in more and more use cases until
we are confident that all possible states for the object have been defined, along with all
the possible events which may cause a transition between different states.

Fig. CS.6 shows a partial state diagram for the ‘Course’ class. States are shown as
rounded rectangles, containing the name of the state and any operations that take place
in that state. Transitions from one state to another are shown as arrows, labelled with the
events that trigger the transition. In this example, the course is assumed to be in a state of
initialisation until the minimum set of information is provided, namely a course code, a
name, and a course leader. Once this information is entered, there is an automatic transi-
tion to the ‘adding units’ state. This does not have to be labelled since there is no external
event triggering the transition. The course is then ‘adding units’ state until the condition
‘units added = units required’ is met. The number of units in a particular course is the
kind of information that one would expect to be readily available at the analysis stage.
Each time a unit is added a message has to be sent from the course object to create a new
unit object (hence the ‘send create unit’ label). Once all the necessary units have been
added the course moves to its ‘fully defined’ state until it is eventually closed.

352

18 Objectoriented analysis and design

Course Undefined

create

Initialising

add code
add name
add leader

(adding units w‘

Kdo: check unit count)‘

[units added = units required] add unit/send create unit
Y
(fully defined)
close
closed

Fig. CS.6: A state diagram shows all the possible states, events and
transitions for objects of a single class. This one is for the ‘Course’ class.

Implementation

Having described the structure of classes and how they behave, we need to move from
analysis and design to implementation of their inner workings; turn operations into
methods. The general approach is that we can apply use cases to the point where the
methods are easily implementable. Actors do not have to be external to the system; they
can be objects within the system itself. This means that a high level use case may send a
message to an object that in turn sends messages to other objects that are described in a
lower level use case. Once object interaction has been described, then it is up to the
programmer to apply the appropriate algorithms to provide the required object behav-
iours. At an implementation level many other types of non-application object can come
into play here, such as container classes and predefined algorithm objects.

From the class diagram and the dynamic modelling we have done so far, we can write
the outline C++ classes for the system, model their associations using pointers and
arrays and add some attributes and methods. Our dynamic modelling so far has
described the ‘addCourse’ method of the ‘Prospectus’ class, so a ‘quick and dirty” imple-
mentation is provided here, supported by some other methods in other classes (mainly
‘get’ and ‘set’ methods). Although a number of short cuts are taken here to keep the code
short and simple, you should be able to see the relationship between the class diagram
and the class definitions in the code, and also the relationship between the “addCourse’
method and the dynamic modelling diagrams.

353

18 Object-oriented analysis and design

C++ source code

354

/*
HEADERS.H Contains skeletons for the classes 'Lecturer', 'Unit’,
'‘LevelOneUnit', 'LevelTwoUnit' and 'FoundationUnit'
This file contains the skeletons of classes that so far have very little
implementation. As they are developed, they will be separated out
into separate header and method files.
*/

// forward declaration to enable ‘Lecturer' to compile
class Course;
// at this stage, no methods are implemented for the lecturer class
class Lecturer
{
public:
// association with up to 2 courses in the role of course leader
Course* leader_of[2];
private:
// the attributes identified in the text analysis
char* email_address;
int room_number;
char* subject_specialism;
public:
h
// the 'Unit' class has the very basic functionality of being able
// to get and set its description
class Unit
{
private:
// association with the lecturer who teaches the unit
Lecturer* taught_by;
/I the description attribute
char* unit_description;
public:
// get and set methods
void setunitDescription(char*);
char* getUnitDescription();
I
// the other unit classes are at this stage totally undeveloped
class LevelOneUnit : public Unit
{
private:
char* coursework_specification;
public:
4
class LevelTwoUnit : public Unit
{
private:
char* exam_specification;
public:
I
class FoundationUnit

{h
/*

UNIT.CPP method definitions for the ‘Unit' class
*/
ttinclude "headers.h"
#include <string.h>

18 Object-oriented analysis and design

// set the description using a parameter
void Unit::setUnitDescription(char* description)

{
int len = strlen(description) + 1;
unit_description = new char{len];
strcpy(unit_description, description);
}

// return the description
char* Unit::getUnitDescription()

{
return unitwdescription;
}
/*
COURSE.H class definition for the ‘Course’ class
The course class has been developed enough for it to follow some of the
processes described in the state diagram. We can set some of its attributes
and add units to it. 'listUnits' is just for testing at this stage, and
might well be replaced later by more flexible methods
*f

#include "headers.h"
class Course
{
private:
// a course may associate with a foundation unit
FoundationUnit* foundation;
/1 it will associate with a number of units
Unit* units[20];
// it also has an association with a lecturer acting as course leader
Lecturer* course_leader;
// attributes
int course_code;
char* course_name;
int unit_count;
int units_required;
public:
Course(int);
void setCourseCode(int code);
void setCourseName(char* name);
void setCourseLeader(Lecturer* lect);
int getCourseCode();
char* getCourseName();
Lecturer* getCoursel.eader();
void addUnit(Unit* unit); // not implemented yet
void removeUnit(Unit* unit); // notimplemented yet
void listUnits();
b
/*
COURSE.CPPmethod definitions for the 'Course' class
*/
#include "course.h"
#include <string.h>
#include <iostream.h>
// constructor
// although the 'units_required" attribute is set to allow the condition
// on the state diagram to be implemented, it is not actually used in the
// simplified methods provided here
Course::Course(int required)

{
355

18 Objectoriented analysis and design

units_required = required;
unit_count = 0;
course_leader = NULL;

}

// straightforward 'set' methods

void Course::setCourseCode(int code)

{
course_code = code;
}
void Course::setCourseName(char* name)
{

int len = strlen(name) + 1;
course_name = new char[len];
strcpy(course_name, hame);

void Course::setCourseleader(Lecturer* leader)

{

course_leader = leader;

}
/ 'get’ methods
int Course::getCourseCode()

{ return course_code;

i:har* Course::getCourseName()

{ return course_name;

iecturer* Course::getCourselLeader()
{ return course_leader;

}

// this method implements the aggregation relationship between
// courses and units
void Course::addUnit(Unit* add_unit)
{
units[unit_count] = add_unit;
unit_count++;
}
// this is useful for testing during development. later on we would probably
/1 be better off removing interface methods like this and replacing them with,
// iterators that return the necessary data to separate interface objects
void Course::listUnits()
{
cout << "Unit descriptions:” << endl;
for(int i = 0; i < unit_count; i++)

{
}

cout << units]i] -> getUnitDescription() << endl;

}
/*
PROSPECT.H Class definition for the 'Prospectus' class
*/
#include "course.h"
// 'Prospectus' has two methods (‘addCourse' and 'listCourses'y implemented
// at a basically functional level.
class Prospectus

{
356

18 Obiject-oriented analysis and design

private:
// associations with courses and lecturers
Course* courses[50];
Lecturer* lecturers[50];
/I attributes
int course_count;
int lecturer_count;
public:
Prospectus();
void addCourse();
void addLecturer(); // notimplemented yet
void listCourses();
void removeCourse(); // not implemented yet
void removeLecturer(); // not implemented yet
b
/*
PROSPECT.CPP Method definitions for the 'Prospectus' class
*/
#include "prospect.h”
#include <string.h>
#include <iostream.h>
Prospectus::Prospectus()
{
course_count = 0;
lecturer_count = 0;

// this method cuts a few corners but demonstrates that a course can be
// created and units added to it. It matches (with some details fudged) the
// sequence and collaboration diagrams in the dynamic model
void Prospectus::addCourse()
{
// local variables for input
int temp;
char buffer[160];
// the constructor here hard codes a small number of required units
// this could be done more flexibly
courses[course_count] = new Course(5);
cout << "Enter course code “;
cin >> temp;
courses[course_count] -> setCourseCode(temp);
cout << "Enter course name ";
cin >> buffer;
courses[course_count] -> setCourseName(buffer);
// this is a complete fudge because we have not yet implemented
// the 'addLecturer' method! Instead, we hard code in a lecturer object
L.ecturer* lect = new Lecturer;
courses[course_count] -> setCourseL.eader(lect);
// now we add some units
for(inti=0;i < 5; i++)
{
cout << "Enter unit description *;
// to input some text with embedded spaces, clear the input stream
// and then get the data using two versions of the 'get’ method
/I (see Chapter 17)
char ch;
cin.get(ch);
cin.get(buffer, 160);
// create a new unit, give it a description and add it fo the course

357

18 Obiject-oriented analysis and design

Unit* temp_unit = new Unit;
temp_unit -> setUnitDescription(buffer);
courses[course_count] -> addUnit(temp_unit);

/I increment the course count ready for the next one
course_count++;

}

// 'listCourses' displays a limited set of information to prove

// the system has some functionality

void Prospectus::listCourses()

{
for(int i = 0; i < course_count; i++)
{
cout << "Course code: " << coursesli] -> getCourseCode() << endl;
cout << "Course name: " << courses[i] -> getCourseName() << endl;
coursesli] -> listUnits();
}
}
/*
TESTMAIN.CPP This 'main'is purely a test of the two prospectus
methods implemented so far. One useful exercise would be to
build a proper interface object to interact with the user
and remove all keyboard and screen i/o operations from the
application objects.
*/
#include "prospect.h"”
void main()
{

/I create a prospectus
Prospectus prospectus;

// add a course to it
prospectus.addCourse();

/I display the results
prospectus.listCourses();

}

This is an interactive run from the test program:

358

Enter course code 100

Enter course name Computing

Enter unit description maths for computing
Enter unit description assembly language
Enter unit description object-oriented analysis and design
Enter unit description programming with C++
Enter unit description knitting patterns
Course code: 100

Course name: Computing

Unit descriptions:

maths for computing

assembly language

object-oriented analysis and design
programming with C++

knitting paiterns

18 Object-oriented analysis and design

Continuing the process

What we have seen so far has been a single brief iteration through the cycle of analysis,
design and implementation, which needs to be followed by many other iterations before
the program is complete. It is beyond the scope of this book to attempt to describe a full
analysis, design and implementation cycle or to fully explain the UML notation. The
reader is advised to refer to the appropriate books by the various developers of the
methodology, and check the UML web site at www.rational.com.

At this stage we have introduced some of the elements of object-oriented analysis and
design and outlined a simple example using a single notation. Hopefully this will have
given a general impression of the issues involved and put the preceding chapters on
programming into a wider context.

Exercise

Continue the design process and implement further methods for the classes. Consider
object persistence in your system and add appropriate functionality to stream objects to
and from disk.

359

Appendix: answers to exercises

Chapter 3 Part 1

Exercise 1

Exercise 2

Exercise 3

360

/*
C3P1_EX1.CPP Chapter 3, part 1, exercise 1
*/
#include <iostream.h>
void main()
{
intx=1;
X++3
X *= B5;
inty =-x;
cout << "X ="<<Xx<<endl << "y =" <<y << endl;
}
/‘k
C3P1_EX2.CPP Chapter 3, part 1, exercise 2
This program uses the escape sequence character \"
to embed speech marks inside a string of characters
*f
#include <iostream.h>
void main()
{
cout << "C++ is an \"Object-Oriented\" language";
}
/*
C3P1_EX3.CPP Chapter 3, part 1, exercise 3
*/

// the 'pass by value' version of the square function
int Squarei(int value_in)

{
}

/I the 'pass by reference' version
void Square2(int& value_in)

{
}

#include <iostream.h>
// 'main’ calls both versions in turn
void main()
{
// declare and initialise an integer variable
intx=4;
// square it using the 'pass by value' function. Because it returns
// a value it can be placed directly in a ‘cout' statement
cout << "Square by value = " << Square1(x) << endl;

return value_in * value_in;

value_in *= value_in;

Appendix: answers to exercises

// the 'pass by reference’ version does not return a value.
// it operates directly on the parameter argument
Square2(x);
//'x' has now been changed by the function
cout << "Square by reference = " << X << end];

}
Chapter 3 Part 2

Exercise 1

/*
C3P2_EX1.CPP Chapter 3, part 2, exercise 1
This program sorts an array of integers
*/
// the 'swap' function is as it appears in the text, using
// 'pass by reference' to swap the parameters
void swap (int& first, int& second)

{
int temp;
temp = first;
first = second;
second = temp;
}

// a constant is declared to size the array
const int SIZE = 10;
#include <iostream.h>
// 'main' sorts the array and displays the result
void main()
{
// the array is declared with an unordered collection of integers
int sort_array[SIZE] = { 8, 23, 4,7, 33,1, 8,9, 55,100 };
// the classic 'bubble sort' algorithm (slow but simple!) is used
// to sort the array into order
for(int i = 0; i < SIZE-1; i++)
{
for(int j = 0; j < SIZE-1; j++)

// if this pair of numbers is in the wrong order, call the 'swap' function
if(sort_arrayl[j] < sort_array[j+1])

{

}
}

swap(sort_array[j], sort_array[j+1]);

}
// the sorted array is displayed
for(i = 0; i < SIZE; i++)

{

cout << sort_array[i] << ", ";
}
cout << endl;

361

Appendix: answers to exercises

Chapter 4

Exercise 1

The suggested attributes and methods for the “coffee cup’ abstract data type are as
follows:

Coffee Cup
colour
temperature
fill level

manufacture
fill

drink from
carry

wash

break

Note the relationships between certain attributes and methods - the attribute “fill level’
for example is affected by the modifier methods “drink from’ and “fill".

As well as the above which appear in the text, we might add “position” as an attribute,
since it relates to the ‘carry’ method - i.e. when the cup is carried its position changes.
Perhaps ‘cleanliness’ could be added to relate to the “wash’ method.

‘Manufacture” and ‘break’ are special methods which define the beginning and the end
of an object’s existence, and will be investigated in later chapters. A method which
creates an object is known as a “constructor’, and a method which destroys an object is
known as a ‘destructor’.

Exercise 2

The wallet / purse abstract data type might look like this:

Wallet/Purse

cash
credit cards

count cash
take out cash
put in cash
use credit card

There may be lots of other things in yours! The interesting thing about this example is
the way in which cash and credit cards may be handled. For example, are we only going
to count our credit cards, or do we need more complex attributes and methods which
allow us to see what credit cards we have and choose to use a particular one. In a
programming context, such questions raise issues of what internal data structures are
required to adequately provide an object’s behaviour.

362

Appendix: answers fo exercises

Exercise 3

/*
C4_EX3.H Chapter 4, exercise 3
('Person' class and methods)
*/
#include <string.h> // for 'strncpy’
class Person
{
private:
char name[20];
int year_of_birth;
float height_in_metres;
public:
// simple 'set' methods
void setName(char* name_in);
void setBirth(int year_in);
void setHeight(float height_in);
// simple 'get’ methods
char* getName();
int getBirthYear();
float getHeight();
// more interesting methods to return 'derived attributes'
int getAge(int current_year);
float getHeightInCM();
b
// 'set' methods
void Person::setName(char* name_in)

{
strncpy(name, name_in, 19);
name[19] = \0’;
}
void Person::setBirth(int year_in)
{
year_of_birth = year_in;
}

void Person::setHeight(float height_in)

height_in_metres = height_in;
}
// 'get' methods
char* Person::getName()

t return name;

i}nt Person::getBirthYear()

{ return year_of_birth;
1}:Ioat Person::getHeight()

{ return height_in_metres;
}

// 'getAge’ returns the approximate age by subtracting the year of birth
// attribute from the parameter and returning the result
int Person::getAge(int current_year)

{

return current_year - year_of_birth;

363

Appendix: answers to exercises

}

// ‘getHeightinCM' multiplies the height in metres by 100 to get
/I the appropriate return value

float Person::getHeightInCM()

{
return height_in_metres * 100;
}
Chapter 5

Exercise 1

In this example, we assume that ‘bankacct.h’ contains the definition for the parame-
terised constructor as described on page 73.

/*
C5_EX1.CPP Chapter 5, exercise 1
(test the parameterised constructor and copy constructor)
*/
#include <iostream.h>
#include "bankacct.h"
void main()
{
// instantiate a BankAccount object with a parameter (start balance)
BankAccount account1(50.00);
/I set its attributes
accounti.setAccountHolder("Fred");
accountl.setAccountNumber(2);
/I test the copy constructor
BankAccount account2 = accounti;
cout << "Holder: " << account2.getAccountHolder() << endl;
cout << "Number: " << account2.getAccountNumber(} << endl;
cout << "Balance: " << account2.getCurrentBalance() << endi;

}
Exercise 2
/*
C5_EX2.CPP Chapter 5, exercise 2
(testing the methods of '‘BankAccount’)
*/

#include <iostream.h>

#include "bankacct.h"

void main()

{
BankAccount account1(0.00), account2(0.00), account3(100.00);
account1.setAccountNumber(1);
account2,setAccountNumber(2);
account3.setAccountNumber(3);
accountl.setAccountHolder("Tom");
account2.setAccountHolder("Dick");
account3.setAccountHolder("Harry");
account1.deposit(50.00);
account2.deposit(75.00);
account3.withdrawal(75.00);
cout << "Details of Accounts" << endl;
cout << " ! << endl << endl;
cout << "Holder: " << account1.getAccountHolder() << endl;

364

Appendix: answers fo exercises

cout << "Number: " << accounti.getAccountNumber() << endl;

cout << "Balance: " << accountt.getCurrentBalance() << endl << endl;
cout << "Holder: " << account2.getAccountHolder() << endl;

cout << "Number: " << account2.getAccountNumber() << endl;

cout << “Balance: " << account2.getCurrentBalance() << endl << endl;
cout << "Holder: " << account3.getAccountHolder() << endi;

cout << "Number: " << account3.getAccountNumber() << endl;

cout << "Balance: " << account3.getCurreniBalance() << endl;

}
Chapter 6
Exercise 1
/~k
C6_EX1.CPP Chapter 6, exercise 1
(convert program on page 98 to dynamic object syntax)
*/

#include <iostream.h>

#include "bankacct.h"

void main()

{

/I the bank account is created using a pointer and the 'new' operator
BankAccount* an_account = new BankAccount;

// the arrow operator is used to send messages to a dynamic object
an_account ->setAccountNumber(100);
cout << an_account -> getAccountNumber();

// dynamic objects should be deleted when no longer needed
delete an_account;

}

Exercise 2

This example shows the BankAccount pointers being passed by reference, though they

could also be passed by value and de-referenced.
/*
C6_EX2.CPP Chapter 6, exercise 2
(swapping dynamic objects by reference)
*/
#include <iostream.h>
#include "bankacct.h”
// the 'swap' function passes the pointers by reference
void swap (BankAccount* &first, BankAccount* &second)

{
BankAccount* temp;
temp = first;
first = second;
second = temp;
}
// in 'main’, two dynamic bank accounts are swapped
void main()
{

/I create the bank accounts
BankAccount* account_pointer1 = new BankAccount;
BankAccount* account_pointer2 = new BankAccount;
account_pointer1 -> setAccountNumber(1);
account_pointer2 -> setAccountNumber(2);

365

Appendix: answers fo exercises

// call the 'swap' function
swap(account_pointeri, account_pointer2);
/I display the account numbers to show the objects have been swapped
cout << “Number of first account: " << account_pointer1 -> getAccountNumber()
<< endl;
cout << "Number of second account: " << account_pointer2 ->
getAccountNumber() << endl;

}

Exercise 3

r ,
C6_EX3.CPP Chapter 6, exercise 3
(declare and initialise an array of BankAccount pointers)

*/
#include "bankacct.h"”
void main()
{
// declare an array of 20 pointers to 'BankAccount'

BankAccount* accounts[20];
// initialise all the pointers to NULL

for(inti = 0; i < 20; i++)

{

}
}

accounts[i] = NULL;

Chapter 7

Exercise 1

366

/*

C7_EX1H Chapter 7 exercise 1

(class attributes and methods for the 'Object’ class)

*/
// the class has two class attributes and two class methods
class Object
{
private:

static int object_count;

static char class_name[10];
public:

Object();

static int getObjectCount();

static char* getClassName();
b
// reserve memory for the class attributes.
// the default for 'object_count' will be zero
int Object::object_count;
char Object::class_namef] = "Object";
// the constructor increments the count by one
Object::Object()
{

object_count++;

}

/ the two 'get' methods return the attributes
int Object::getObjectCount()

Appendix: answers fo exercises

return object_count;

}
char* Object::getClassName()
{

}

return class_name;

Exercise 2
This example assumes that ‘C7_EX1.H’ contains the class definition from exercise 1

/*
C7_EX2.CPP Chapter 7, exercise 2
('main' function to test the 'Object’ class)
i
#include "c7_ex1.h"
#include <iostream.h>
void main()

Object object1, object2, object3, object4;

cout << "The total number of objects is: " << Object::getObjectCount()
<< endl;

cout << "The name of the class is: " << Object::getClassName() << endl;

}

Exercise 3

Although this question is rather open ended, we might suggest a range of possible class
attributes that are common to all objects of the class. Perhaps the number of bananas that
will fit in a box, or how many weeks it takes a banana to ripen. We might contrast these
with object attributes like ‘ripeness’ (each banana will have its own state) or ‘colour’
(anything from green to yellow to black). The example program contrasts a class
attribute recording the weight of all the bananas with an object attribute recording the
weight of each single banana.

/*
C7_EX3.CPP Chapter 7, exercise 3

(Class 'Banana’ and test program. These are
suggestions for possible class attributes,
contrasted with a possible object attribute)

*/

class Banana

{

private:

// class attributes
static int banana_count;
static float crate_weight;
// an object attribute
float weight;
public:
Banana(float banana_weight);
static int howManyBananas();
static float whatDoesTheCrateWeigh();
float whatDoesThisBananaWeigh();
b
// reserve memory for the two class attributes
// (default values will be zero)

367

Appendix: answers fo exercises

int Banana::banana_count;

float Banana::crate_weight;

// the constructor takes the weight of this banana as a parameter

Banana::Banana(float banana_weight)

{

// add to the count
banana_count++;

/l set the attribute value using the parameter
weight = banana_weight;

// add the weight of this banana to the class attribute
crate_weight += banana_weight;

} ,

// class method to return the number of bananas

int Banana::howManyBananas()

{
}

// class method to return the weight of all the bananas
float Banana::whatDoesTheCrateWeigh()

{
}

// method to return the weight of this banana
float Banana::whatDoesThisBananaWeigh()

{
}

// the 'main’ function tests the various methods
#include <iostream.h>
void main()
{
// note how the class method can be used even if no objects of the
// class have been instantiated
cout << "Total Bananas = " << Banana::howNanyBananas() << endl;
// four bananas are instantiated
Banana banana1(10.00), banana2(7.5), banana3(8.00), banana4(9.25);
// the counting and weighing of the bananas.....
cout << "Total Bananas =" << Banana::howManyBananas() << endl;
cout << "The crate of bananas weighs " << Banana::whatDoesTheCrateWeigh()
<< endl;
cout << "This banana weighs " << bananal.whatDoesThisBananaWeigh()
<< endl;

return banana_count;

return crate_weight;

return weight;

}
Chapter 8

Exercise 1

In this example, the added methods are simply constructors and get/set methods.

/*
PUBLISH.H Chapter 8 exercise 1
(add base class and methods to 'Book' and 'Magazine' classes.
This header file contains the class bodies.
C8_EX1.CPP contains the method definitions)
*/

// this base class has been added to generalise parts of the ‘Book'
// and 'Magazine' classes

368

Appendix: answers fo exercises

class Publication
{
private:
// shared attributes for both derived classes
char title[30];
char publisher[30];
public:
// 'set' methods added
void setTitle(char* title_in);
void setPublisher(char* publisher_in);
// 'get’ methods added
char* getTitle();
char* getPublisher();
B
/1 'Book’ now derives from 'Publication, and only has two attributes.
// the other two are inherited.
class Book : public Publication
{
private:
char author{30];
char ISBN[20];
public:
// 'set’ methods added
void setAuthor(char* author);
void setiISBN(char* ISBN);
// 'get' methods added
char* getAuthor();
char* getiISBN();
b
// the 'Magazine' class inherits from 'Publication and adds one attribute
class Magazine : public Publication
{
private:
char editor[30];
public:
// 'set' method added
void setEditor(char* editor_in);
// ‘get’ method added
char* getEditor();

h
/*
C8_EX1.CPP Chapter 8, exercise 1
(definition of methods for publication classes)
*/

#include "publish.h"
#include <string.h>
// definitions of 'Publication' methods
void Publication::setTitle(char* title_in)
{
strncpy(title, title_in, 29);
title[29] = "\0";

void Publication::setPublisher(char* publisher_in)

{
strncpy(publisher, publisher_in, 29);
publisher[29] = "\0';

char* Publication::getTitle()

369

Appendix: answers fo exercises

{
return title;
}
char* Publication::getPublisher()
{
return publisher;
}

// definitions of 'Book' methods
void Book::setAuthor(char* author_in)

{
strncpy(author, author_in, 29);
author[29] = "\0';
}
void Book::setISBN(char* ISBN_in)
{

strncpy(ISBN, ISBN_in, 19);
ISBN[19] = "\0';

}
char* Book::getAuthor()
{

return author;

}
char* Book::getISBN()

{
return ISBN;

// method definitions for the '‘Magazine' class
void Magazine::setEditor(char* editor_in)
{
strncpy(editor, editor_in, 29);
editor[29] = \0';
}
char* Magazine::getEditor()
{

}

return editor;

Chapter 9

Aggregation exercise 1

370

/*
C9_EX1.CPP Chapter 9, exercise 1
(test the methods of the 'Bike' class)
*/
#include "bike.h" // class definitions from page 159
#include <iostream.h>
void main()
{
// create a bike with wheels of size 24
Bike my_bike(24);
// test the wheel size methods of the 'Bike' class
cout << "Wheel 1 size is: " << my_bike.getFrontWheelSize() << endl;
cout << "Wheel 2 size is: " << my_bike.getBackWheelSize() << endl;

}

Appendix: answers to exercises

Aggregation exercise 2
/*
C9_EX2.H Chapter 9 exercise 2
(class and method definitions for the 'Rider' class)
*/
#include <string.h>
class Rider
{
private:
char name[30];
public: ‘
Rider(char* name_in);
char* getName();
}
// constructor
Rider::Rider(char* name_in)
{
strncpy(name, name_in, 29);
name[29] = \0';
}
/I method to return the rider's name
char* Rider::getName()

{

return name;
}

Association exercise 1

/*

C9ASCEX1.H Chapter 9, association exercise 1

(Header file for 'Telephone' and 'Desk’ classes)

*/

// forward declaration of 'Telephone' to allow '‘Desk’ to compile
class Telephone;
// definition of class 'Desk’, associated with a ‘Telephone'
class Desk
{
private:
char name[80];
Telephone* telephone;
public:
Desk(char* name_in);
char* getName();
void addTelephone(Telephone* phone);
Telephone* getTelephone();
b
// definition of class 'Telephone’, associated with a ‘Desk’
class Telephone
{
private:
int telephone_number;
Desk* desk;
public:
Telephone(int number);
int getTelephoneNumber();
void putOnDesk(Desk* location);
Desk* getDesk();

371

Appendix: answers to exercises

372

b

#include <string.h>

// method definitions for the 'Desk’ class
Desk::Desk(char* name_in)

{

strepy(name, name_in);

char* Desk::getName()

{ return name;

zloid Desk::addTelephone(Telephone* phone)
{ telephone = phone;

}l‘elephone* Desk::getTelephone()

{

return telephone;

// method definitions for the 'Telephone' class
Telephone::Telephone(int number)

{

telephone_number = number;

int Telephone::getTelephoneNumber()

{
return telephone_number;
}
void Telephone::putOnDesk(Desk* location)
{
desk = location;
}
Desk* Telephone::getDesk()
{
return desk;
}
/*

C9ASCEX1.CPP Chapter 9, association exercise 1
(Test program for desk/telephone association)
*/
#include "c9ascex1.h"
#include <iostream.h>
void main()
{
// create a desk and a telephone
Desk* desk1 = new Desk("reception desk");
Telephone* phonel = new Telephone(9991);
// make the link between the desk and the telephone
deskl -> addTelephone(phonel);
// make the link between the telephone and the desk
phonel -> putOnDesk(desk1);
/I display the details of the association from both objects
cout << "The " << desk1 -> getName() << " is on extension ";

cout << desk1 -> getTelephone() -> getTelephoneNumber() << endl;

cout << "Extension " << phone1 -> getTelephoneNumber()
<< " is for the ;
cout << phone1 -> getDesk() -> getName() << endl;

Appendix: answers to exercises

Chapter 10

Exercise 1

/*
C10_EX1.CPP Chapter 10, exercise 1
(using casts to find the ASClI value of characters)
*/
#include <iostream.h>
void main()

{ ,
/I display headings for the data

cout << "ASCII" << \t' << "character" << endl;
/1 loop from ASCII code 97 (‘a") to ASCII code 122 ('z')
for(int i = 97; i < 123; i++)

// use a cast to force ‘cout' to display the code as a character
cout << i << '\t' << char(i) << endl;

}
}

Chapter 11

Exercise 1

Only the modifications to the existing class are included here. First, the prototype is
added to the class definition:

Point operator + (const Point& point);

Then the overloaded operator is defined. The addition operator returns an object
containing the result:

Point Point::operator + (const Point& point)

{
Point temp;
temp.x = x + point.x;
temp.y =y + point.y;
return temp;

}

Exercise 2

Only the modifications to the existing class are included here. First, the prototype is
added to the class definition:

int operator > (const StudentGrade& grade_in);

Then the overloaded operator is defined. The ‘greater than’ operator returns an integer
representing true (1) or false (0):

int StudentGrade::operator > (const StudentGrade& grade_in)
{
/1 use temporary variables to work out which object has the highest grades
int is_greater, totall, total2;
totall = maths_grade + english_grade;
total2 = grade_in.maths_grade + grade_in.english_grade;
// compare the local integer values to return 'true’ (1) or 'false’ (0)
if(total1 > total2)

373

Appendix: answers fo exercises

{
is_greater = 1;
}
else
{
is_greater = 0;
}
return is_greater;
}
Chapter 12

Exercise 1

/*

C12_EX1.CPP Chapter 12, exercise 1

(overloaded 'getMax' functions)

*/
#include <iostream.h>
/1 fix the array sizes with a constant
const int SIZE = 10;
// this version of 'getMax’ returns the largest integer in an array
int getMax(int integer_array[SIZE])
{
/f'max’ is initialised to zero

int max = 0;
/l iterate through the array

for(inti = 0; i < SIZE; i++)

{
/I'if the current integer is larger than 'max’, replace the value in 'max

if(integer_array[i] > max)

max = integer_array[i];

}

// return the resuilt

return max;

}

// this version of 'getMax’ returns the largest letter character in an array

/l'if there are no letter characters then zero is returned

char getMax(char char_array[SIZE])

{

// 'max' is initialised to zero

char max = 0;

// iterate through the array

for(int i = 0; i < SIZE; i++)
{

// if the current character is either an upper case or lower case letter...
if((char_array{i] >= 65 && char_array[i] <= 90) ||
(char_array[i] >= 97 && char_arrayl[i] <= 122))

{

// if that letter is larger than 'max’, replace the value in 'max’

if(char_arrayl[i] > max)

max = char_array[i];

374

Appendix

: answers fo exercises

// return the result
return max;

}

/I a test 'main' function

void main()

{

// put some values into an integer array
int integers[SIZE] = {4, 67, 43, 99, 2, 1, 45, 86, 9, 2};

// put values into two 'char’ arrays, one with numbers and one with letters
char chars1[SIZE] = {a’, 'x', 'h', 'k', 'n’, 'p', 'y, 'b", 's', 'w'};
char chars2[SIZE] = {34, 2, 78, 130, 98, 145, 44, 23, 22, 3};

// test the integer version of 'getMax’
cout << "Maximum integer is " << getMax(integers) << endl;

// test the char version of 'getMax’ using both char arrays
cout << "Highest ASCH character (from letter array) is "

<< getMax(chars1) << endl;
cout << "Highest ASCII character (from number array) is "
<< getMax(chars2) << endl;

}
Chapter 13
Exercise 1
/*
C13_EX1.CPP Chapter 13, exercise 1
(statically bound polymorphic methods
in derived classes of 'Pump')
*/

#include <iostream.h>
// the base class 'Pump’, with an empty 'turnOn’ method
class Pump
{
public:
void turnOn() {}
b
// the derived class 'FuelPump' implements turnOn’
class FuelPump : public Pump

{
public:

void turnOn();
s

// "WaterPump' implements its own version of 'turnOn'
class WaterPump : public Pump

{
public:

void turnOn();
b

// the polymorphic definitions of 'turnOn’ in the derived classes:
void FuelPump::turnOn()

{

cout << "pumping fuel" << endl;

void WaterPump::turnOn()
{

cout << "pumping water" << endl;

375

Appendix: answers fo exercises

}

// 'main’ tests the 'turnOn' methods

void main()

{

// source code from page 217
FuelPump fuel_pump1;
WaterPump water_pumpt;
fuel_pump1.turnOn();
water_pump1.turnOn();

}
Chapter 14
Exercise 1
/
C14EX1.CPP Chapter 13, exercise 1
(dynamically bound polymorphic/virtual
methods in derived classes of 'Pump’)
*/

#include <iostream.h>
// the base class 'Pump’, with an abstract 'turnOn' method
class Pump
{
public:
virtual void turnOn() = 0;
b
// the derived class 'FuelPump' implements ‘turnOn'
class FuelPump : public Pump

{
public:

virtual void turnOn();
b

// WaterPump' implements its own version of 'turnOn'
class WaterPump : public Pump

{
public:

virtual void turnOn();
b

// the polymorphic definitions of 'turnOn'’ in the derived classes:
void FuelPump::turnOny()

{ cout << "pumping fuel" << endl;

zloid WaterPump::turnOn()

{ cout << "pumping water" << endl;

3/ 'main’ tests the 'turnOn' methods with dynamic binding
void main()

{

// source code from page 232/233
Pump* a_pump;
int pump_type;
cout << "Enter 1 for a fuel pump, 2 for a water pump ";
cin >> pump_type;
if(pump_type == 1)

376

Appendix: answers to exercises

{
a_pump = new FuelPump;
}
else
{
a_pump = hew WaterPump;
}
a_pump ~> turnOn();

}
Chapter 15 Part 1

Exercise 1

/*
C15P1EX1.CPP Chapter 15, part 1, exercise 1
(class and method definitions for the 'CD' class,
with declaration and initialisation of an array of
pointers)
*/
#include <string.h>
class CD
{
private:
char artist[30];
char title[30];
public:

// constructor
CD(char* artist_in, char* title_in);
// 'get’ methods
char* getArtist();
char* getTitle();
b
// constructor definition
CD::CD(char* artist_in, char* title_in)
{
strncpy(artist, artist_in, 29);
artist[29] = \0';
strnepy(title, title_in, 29);
title[29] = "\0';

/I method definitions
char* CD::getArtist()

{
return artist;
}
char* CD::getTitle()
{
return title;
}

// in 'main' we declare and initialise an array of pointers
#include <iostream.h>
void main()
{
// declaration of an array of pointers
CD* cabinet[50];
// initialisation of pointers to NULL

377

Appendix: answers to exercises

for(int i = 0; i < 50; i++)

{
}

/l instantiate an object to test the methods
cabinet[0] = new CD("The Stroustrups", "Brain on Fire");
cout << cabinet[0] -> getArtist() << ", " << cabinet[0] -> getTitle()
<< endl;

cabinet[i] = NULL;

}

We declare pointers rather than objects because this is not a fixed aggregation (like the
hotel rooms in the example program) but a container. Therefore we need to be able to
handle dynamic objects that come and go (in and out of the container) as the program
runs. Pointers should, of course, be initialised to NULL.

Chapter 15 Part 2

Exercise 1

This example assumes that the definition of the template “Stack’ class (pages 276 to 278)
is in “tstack.h’

* ,
C15P2EX1.CPP Chapter 15, part 2, exercise 1 \
(test the template 'Stack’ class, in this example
with dynamic arrays of type 'char’)
*/

#include "tstack.h"
#include <iostream.h>
#include <string.h>
// this 'main’ function tests the template stack with dynamic strings
void main()
{
// local variables for user input
int stack_size, choice;
char buffer{80];
// pointer to instantiate dynamic strings
char* string;
// instantiate a 'Stack' object with dynamically allocated size
cout << "Enter size of stack required ";
cin >> stack_size;
// because the template stack always handles pointers, we use 'char'
// rather than 'char*' as the type when creating the stack object
Stack <char> a_stack(stack_size);
// the menu iterates until the user chooses to exit
do
{
cout << "Enter 1 to push, 2 to pop, 3 to exit ";
cin >> choice;
switch(choice)

// push a string onto the stack
case 1 : cout << "Enter a string ";
cin >> buffer;
// dynamically allocate the string and copy from the array
string = new char[strlen(buffer) + 1];
strepy(string, buffer);

378

Appendix: answers fo exercises

/f if 'push'’ returns zero, then it was unsuccessful
if('a_stack.push(string))

cout << "No room on the stack" << endl;
}
break;
// pop a string from the top of the stack. if 'pop' fails (ie the stack
// is empty) then it returns NULL
case 2 : if(string = a_stack.pop())

{
cout << string << end};
}
else
{
cout << "Nothing on the stack" << endi;
}
break;
}
while(choice != 3);
}
Chapter 16

Exercise 1

/*
C16_EX1.H Chapter 16, exercise 1
(Class and method definitions for TemperatureGauge',
'Switch and ‘Thermostat’)

*/

#include <iostream.h>

// the 'TemperatureGauge' class and method

class TemperatureGauge

{

private:
float temperature;

public:
fioat getTemperature();

¥

float TemperatureGauge::getTemperature()

{

// this is a fudge to pretend we have a temperature being measured!
cout << "Enter current temperature “;
cin >> temperature;
return temperature;

}

// an enumerated type for the state of the switch

enum status{on, off};

// the 'Switch' class and methods

class Switch

{

private:
status switch_status;

public:
void turnOn();
void turnOff();

379

Appendix: answers to exercises

b
// methods to turn the switch on and off
void Switch::turnOn()
{
switch_status = on;
cout << "Switch is on" << endl;

}
void Switch::turnOff()
{
switch_status = off;
cout << "Switch is off" << endl;
} ,
// the 'Thermostat' class multiply inherits from both TemperatureGauge'
// and 'Switch'
class Thermostat : public TemperatureGauge, public Switch
{
private:
float required_temperature;
public:
void setRequiredTemperature(float temp);
void monitorTemperature();
b
/I methods of 'Thermostat'
void Thermostat::setRequiredTemperature(float temp)

{
}

void Thermostat::monitorTemperature()

required_temperature = temp;

if(getTemperature() < required_temperature)

turnOn();
}

else

turnOff();

}
/*
C16_EX1.CPP Chapter 16, exercise 1
(Test program for the 'Thermostat' class)
*/
#include "c16_ex1.h"
void main()
{
// create a thermostat object
Thermostat therm;
/I local variables for user input
int choice = 0;
float temp;
// iterating menu
do

{

cout << "Enter 1 to set temperature, 2 to monitor, 3 to quit
<< endl;

cin >> choice;

switch(choice)

{
380

Appendix: answers to exercises

/I set the temperature
case 1 : cout << "Enter required temperature ";
cin >> temp;
therm.setRequiredTemperature(temp);
break;
// monitor the temperature (the method actually asks for input
// from the keyboard)
case 2 : therm.monitorTemperature();

}
} while(choice != 3);

}
Chapter 17

Exercise 1

Only the modifications to the existing class are included here. First, the prototype of the
‘friend’ is added to the class definition:

friend ostreamé& operator << (ostream& out, Point& point);

Then the overloaded operator is defined. The operator sends the attribute values (with
text labels) to the output stream:

This overloaded operator is tailored for screen output with text labels. It would not be
very helpful for writing to file because the labels would have to be read in as well as the
data.

ostream& operator << (ostream& out, Point& point)

{

out << "x: " << point.x << " y: " << point.y << endl;
return out;

381

Glossary

Many terms are introduced in this book, but this is a summary of the most fundamental.

Abstract data type A user defined data type, including its attributes (the data
representation of its state) and its methods (its behaviours). An abstract data type acts
like a ‘blueprint’ for all objects of that type.

Aggregation Objects which are composed of other objects are known as aggregations.
They may involve containment (the contained objects are components of the larger
object) or containership (see ‘container class’).

Attribute A characteristic of an object. An object attribute contains state data about the
object.

Class The definition of objects of the same abstract data type. In C++, ‘class’ is the
keyword used to define such types, some of which may be abstract base classes, not
intended to instantiate objects.

Container Class A class defining objects which are able to contain other objects. Objects
of container classes are used to manage collections of objects of other classes.

Dynamic (late) binding The identification at run time of which version of a
polymorphic method is being called. When the class of an object cannot be identified at
compile time, it is impossible to statically bind object methods, so dynamic binding must
be used.

Encapsulation The combining together of attributes (data) and methods (processes) into
a single object type with a public interface and a private implementation.

Genericity The ability of a class, method or function to apply the same implementation
to different data or object types.

Inheritance The derivation of one class from another so that the attributes and methods
of one class are part of the definition of another class. Derived classes are always ‘a kind
of” their base classes.

Metaclass The ‘class of a class’ — the metaclass contains those parts of a class which are
not part of objects.

Method The implementation of some behaviour of an object.
Object An instance of a class. Objects have state, identity and behaviour.

Operator overloading Giving new meanings to the existing operators available in
C++, allowing them to be used with objects of user-defined classes.

Overloading Allowing the same function or method name to be used for more than one
implementation, the various versions distinguishable by differences in their parameter
lists.

Polymorphism In general terms, the ability of different classes of object to respond to
the same message in different, class-specific ways. Polymorphic methods are those
which have one name but different implementations for different classes.

Static (early) binding The identification at compile time of which version of a
polymorphic method is being called. In order to do this, the compiler must identify the
class of an object.

382

Bibliography

Where references appear in the text, the name of the author and date of publication
appears in square brackets (in the format used here) along with the page reference
numbers.

Books

[Blair et al, 1991]

‘Object Oriented Languages, Systems and Applications’

Gordon Blair, John Gallagher, David Hutchison and Doug Shepherd
Pitman, London 1991

[Booch, 1991}

‘Object Oriented Design With Applications’
Grady Booch

Benjamin/Cummings, Redwood City, Calif. 1991

[Booch, 1994]

‘Object-Oriented Analysis and Design With Applications’ (2nd Edition)
Grady Booch

Benjamin/Cummings, Redwood City, Calif, 1994

[Coad /Yourdon, 1990]

‘Object-Oriented Analysis’

Peter Coad and Edward Yourdon

Yourdon Press, Prentice-Hall, New Jersey 1990

[Coplien, 1992]

‘Advanced C++ Programming Styles and Idioms’
James O. Coplien,

Addison-Wesley, 1992

[Cox, 1986}

‘Object-Oriented Programming — An Evolutionary Approach’
Brad J. Cox

Addison-Wesley, Reading, Mass. 1936

[Gamma et al, 1995]

‘Design Patterns: Elements of Reusable Object-Oriented Software’
Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides,
Addison-Wesley, 1995

[Graham, 1991]

‘Object Oriented Methods’

Jan Graham

Addison-Wesley, Wokingham 1991

[Holmes, 1992]

‘Convert to C and C++
B.J.Holmes

DP Publications, London 1992

[Jacobson, 1992}

‘Object-Oriented Software Engineering — A Use Case Driven Approach’
Ivar Jacobson, Magnus Christerson, Patrik Jonsson & Gunnar Overgaard
Addison-Wesley, Wokingham 1992

383

Bibliography

[Kernighan & Ritchie, 1988]

‘The C Programming Language’ (2nd edition)
Brian Kernighan and Dennis Ritchie
Prentice-Hall, New Jersey 1988

[Lafore, 1991}

“The Waite Group’s Object-Oriented Programming in Turbo C++
Robert Lafore

The Waite Group Press, Emeryville, Calif. 1991

[Meyer, 1988]

‘Object-oriented Software Construction’
Bertrand Meyer

Prentice-Hall, Hemel Hempstead, 1988

[Naughton, 1996]

“The Java Handbook’

Patrick Naughton,

Osborne McGraw Hill, Berkeley 1996

[Pirsig, 1974]

‘Zen and the Art of Motorcycle Maintenance’
Robert M. Pirsig

Corgi, London, 1978 (originally published 1974)

[Rumbaugh et al, 1991]

‘Object-Oriented Modeling and Design’

James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lorenson
Prentice-Hall International, New Jersey, 1991

[Shlaer & Mellor, 1988]

‘Object-Oriented Systems Analysis — Modelling the World in Data’
Sally Shlaer, Stephen J. Mellor

Yourdon Press, New Jersey, 1988

’

[Stroustrup, 1991]

“The C++ Programming Language’ (2nd Edition)
Bjarne Stroustrup

Addison-Wesley, Reading, Mass. 1995

Articles

[Beck & Cunningham, 1989]

‘A Laboratory For Teaching Object-Oriented Thinking’
Kent Beck and Ward Cunningham

Sigplan Notices, Vol 24, No. 10, October 1989 (pp 1-6)

[Blackwell, 1993]

‘Bottom-Up Design and This Thing Called an Object’
Alan Blackwell

EXE magazine, Vol 8, Issue 7, December 1993 (pp 28-32)

[Brooks, 1986]

‘Essence and Accidents of Software Engineering’
Frederick P Brooks

Computer magazine, April 1987 (pp 10-19)

384

Bibliography

[Chaudhri, 1993]

‘Object Database Management Systems — An Overview’
Akmal B. Chaudhri

BCS OOPS Group Newsletter 18 (pp 6-15)

[Collinson, 1991]

‘What Dennis says’

Peter Collinson

EXE magazine, Vol 5, Issue 8, February 1991 (pp 14-18)

[Corbett, 1993]

‘A Framework for Application Class Design’

Eric Corbett

EXE magazine, Vol 7, Issue 10, April 1993 (pp 12-16)

[Cox, 1990]

“There Is a Silver Bullet’

Brad J. Cox

BYTE magazine, October 1990 (pp 209-218)

[Drake, 1990]

“History of a Useful Illusion’

Richard Drake

EXE magazine, Vol 4, Issue 11, May 1990 (pp 18-24)

[Flower, 1993]

‘Objects by Design’

Alan Flower

EXE magazine, Vol 8, Issue 7, December 1993 (pp 12-20)

[Gibson, 1990]

‘Objects — Born and Bred’

Elizabeth Gibson

Byte magazine, October 1990 (pp 245-254)

[Harmon, 1990]

‘Object-Oriented Systems’

Paul Harmon

Intelligent Software Strategies Newsletter, (Cutter Information Corp) September 1990

[Kesterton 1997]

“The Role of Use Cases in the Unified Modelling Language’
Anthony Kesterton,

Proceedings of ‘Object Technology 97" conference, Oxford 1997

[McCausland, 1996]

‘Tmplementing Associations in C++’

Campbell McCausland,

Proceedings of the ‘Object Technology 96’ conference, Oxford 1996

[Parnas, 1972]

‘On the Criteria To Be Used in Decomposing Systems Into Modules’

in ‘Classics in Software Engineering’, ed. E.Yourdon, Yourdon Press, New Jersey 1979
(pp 141-150)

[Rumbaugh, 1996]

‘Models for Design: Generating Code for Associations’
James Rumbaugh,

Journal of Object-Oriented Programming, February 1996

385

Bibliography

[Smith, 1989]

"The Man Who is C++

Paul Smith

EXE Magazine, Vol 4, Issue 7, December 1989 (pp 12-17)

[Stroustrup, 1988]

’A Better C?

Bjarne Stroustrup

Byte magazine, August 1988 (pp 215-216D)

[Stump, 1993]

‘Multiple Inheritance: When? and When Not?

Laine Stump

EXE magazine, Vol 7, Issue 8, February 1993 (pp 49-55)

[UML, 1997]
UML documents at http:/ /www.rational.com/
Rational Corporation, 1997

[Watts (1), 1992]

“Yet More Bjarne’

Will Watts

EXE magazine, Vol 6, Issue 9, March 1992 (pp 30-36)

[Watts (2), 1992]

‘La Resistance’

Will Watts

EXE magazine, Vol 6, Issue 11, May 1992 (pp 28-35)

[Wegner, 1989]

‘Learning the Language’

Peter Wegner

Byte magazine, March 1989 (pp 245-253)

[Wirth, 1990]

‘OOP meets Modula-2’

Niklaus Wirth

EXE magazine, Vol 4, Issue 11, May 1990 (pp 12-16)

[Yourdon, 1990]

‘Auld Lang Syne’

Edward Yourdon

BYTE magazine, October 1990 (pp 257-263)

386

Index

#include, 17, 32, 39, 63
\0 (escape sequence), 38, 39
“\n’ (escape sequence), 22, 32, 327

absolute value, 208-9
abstract class, 117-8, 119, 123, 139, 217, 218, 2313, 238
abstract data type, 4, §, 10, 53, 54-5, 57, 58, 62
abstract method, 218, 219, 221-2, 237-8
abstraction, 7, 8, 54, 139, 339-40
activity diagram, 349
actor, 135, 336, 343, 345, 350
‘address of” operator (&), 44
agent, 135
aggregation, 8-9, 133, 13648, 159-60, 161-2, 244, 292,
293, 334, 341
fixed, 140, 141, 143-5, 244
partial, 140
recursive, 140
variable, 140, 147-8, 244
AXKO (a kind of), 111-2, 284, 341
ALGOL (ALGOrithmic Language), 14, 15, 18
alias, 27
ancestor, 110, 286
ANSI, 14, 16, 21, 39, 211
antisymmetry, 139
APO (a part of), 112, 136, 341
applet, 11
application class framework, 142-3
arithmetic operator, 24-6, 181-2, 186, 192, 194, 201
array, 36, 246, 248
as function parameter, 37
bounds checking, 36, 40
declaration, 36
dynamic allocation, 163-4, 207
initialisation, 36
of chars, 38
of integers, 36
of object pointers, 95, 154
of objects, 127, 196
of objects — initialisation, 210
of two dimensions, 36
arrow operator (—>), 87, 88
‘artifact of the implementation’, 1, 339, 345
ASCII character, 21, 22, 49, 222-4, 314, 315
assignment operator (=), 23, 39, 40, 88, 187, 190-1,
197-9
association, 133-5, 14858, 341, 346-8
associative array, 250
AT&T, 15
attribute, 56, 99-101, 140, 310-1, 348
automatic object, 77, 78-9, 83

B (language), 13-4

Backus Naur Form, 14

bag, 250

base class, 110, 111, 220, 232-3
BCPL (Basic CPL), 13, 14, 15, 20, 34
Beck & Cunningham, 337, 340
Bohm & Jacopini, 45

Booch, Grady, 246, 293, 335, 339, 340
bool (data type) 21, 165, 211
Boolean, 46

brace, 26, 93

break (keyword), 45, 47

C, 13-4
C++,7,13,15-19
callback function, 252
Cardelli & Wegner’s taxonomy, 179
casting, 182-5, 197, 275
character constant, 22
child class, 110
cin, 334, 313-4
cin.get (method), 269, 314
class, 2, 55, 58-60, 65-7
attribute, 101, 105
based programming, 9
declaration, 59
diagram, 162, 349
keyword, 58
libraries, 246
methods, 102, 105
reservation of memory, 107
classical categorisation, 335
classification hierarchy, 110, 111, 117, 179, 181, 285
cleanup, 82, 89, 94, 278
CLOS, 17-18
close (ofstream method), 320
Coad/Yourdon, 61, 334
coercion, 177, 179, 181-2
cohesion, 5
collaboration diagram, 349, 3512
colon operator (:), 1201, 145-6, 294
comment syntax, 34-5
Common Object Request Broker Architecture
(CORBA), 11
composition hierarchy, 137
conceptual clustering, 335
const (keyword), 24, 28, 74-5, 192
constant, 24
constructor, 68-9, 71-2, 878, 93, 128
copy, 69-70, 74-5, 187
default, 69, 71
overloading, 209-11
parameterised, 73-4

387

Index

parameters in aggregation, 145-6
parameters in inheritance, 129-30
parameters in multiple inheritance, 307-8
user-defined, 69, 72
container
direct, 247
heterogenous, 266
indirect, 247
container class, 89, 133, 137, 180, 211, 244-83
containment, 136, 137, 244
continue (keyword), 45
coupling, 5
cout, 32-3, 219, 313, 315-8
CPL (Combined Programming Language), 13
CRC (Class/ Responsibility / Collaboration) card,
337-8, 339
ctype.h, 315

data dictionary, 346
data type, 20-22, 54
decrement operator (- -), 25
default parameter value, 73-4
default return type, 27
delegation, 140-1
delete (operator), 87, 89-90, 93, 95, 147, 201
delete[] (operator), 164, 166, 198
deque, 247, 249
derived attribute, 348
derived class, 110, 112, 119, 121-2, 216, 219-21, 287
descendant, 110, 188, 232
destructor, 81-2, 91-2
calling, 82, 92-3
of file stream object, 320
user—defined, 91-2
virtual, 236-7, 267
do..while, 48, 49
domain analysis, 10, 336-7
dot operator (.), 70-1, 75, 195
doughnut diagram, 53—4
dynamic identifier, 181
dynamic (late) binding, 181, 231-3, 236, 267, 287
dynamic model, 349-53
dynamic object, 77, 80-2, 87-90, 93-7, 231, 234, 277

early binding, see static binding
EBCDIC, 21, 22

Eiffel, 7, 18, 104
encapsulation, 8, 52, 246, 253
end], 32, 33

enumerated type, 164-5, 211
eof (istream method), 322
escape sequence, 22-3

event, 352

extensibility, 16, 17

extern (keyword), 84
external object, 77, 78

388

FIFO (First In First Out), 249
file, 310, 319-31
fill (ios method), 315
fixed aggregation, see aggregation
“for’ loop, 47-8
friend function, 323-4
fstream.h, 319, 321, 327, 331
function, 16-17, 20, 26-31
calling, 28-9
declaration, 29
declarator, 30
prototype, 30

garbage collection, 82

generalisation, 110-11, 116

genericity, 105, 180, 203, 205-8, 246, 275, 282
get (method), 313

Gibson, Elizabeth, 334, 338

goto (keyword), 16, 47

granularity, 340

GUI (Graphical User Interface), 7

Has—a, 136
Header file, 17, 32, 39, 62

1/0, 314, 313-31
‘if’ statement, 46
ifstream, 319
increment operator (++), 25, 26, 48
information hiding, 52-3
inheritance, 8, 110-32, 284, 341, 348
of constructor, 129-30
of destructor, 130, 236
of overloaded operators, 188-9
interface (Java), 293
interface class, 287-8, 306-7
interviewing, 338
iomanip.h, 32, 316-7
ios class, 313, 315-6
iostream.h, 17, 32, 33, 313
isalpha (function), 315
isascii (function), 315
isdigit (function), 315
isspace (function), 315
istream, 313, 317
iteration, 47-9
iterator object, 251-2
iterator method, 251

Jacobson, Ivar, 7, 336, 337
Java, 6,7, 11,19, 293
join class, 285

index

keyword, 16, 19

late binding, see dynamic binding
library function, 17
LIFQO (Last In First Out), 248
link (between objects), 134-5, 148-51
link attribute, 348
linkage, 78, 84
linking (files), 124
list, 247, 248

doubly linked, 255

intrusive, 257

non-intrusive, 257

singly linked, 254, 255-65
logical operators, 46

main (function), 29, 162
manipulators, 3167
map, 247, 250
mechanism, 341
member function, 59
message passing, 9, 10, 70, 163, 177-8
meta-object, 104
metaclass, 99-109
metadata, 104
metalanguage, 99
method, 56-8, 100, 251, 339
declaration, 60
definition - inline, 59, 120
Meyer, Bertrand, 5, 18
mixins, 293
modifier method, 56-7
modularity, 4-5
monomorphic, 177, 215
multimap, 247, 250
multiple association, 154-8
multiple inheritance, 8, 115, 284-309
alternatives to, 291-3
ambiguity in, 286
in stream classes, 321-2
multiplicity, 347
multiset, 247, 250

new (operator), 87-8, 89, 93, 1634, 258, 277

NULL (constant), 90-1, 93, 98, 254-5

object, 1-2, 55
behaviour, 52, 65, 338
identity, 52, 66-7
instantiation,66, 68-9, 85, 234, 276-7
state, 52, 56, 65, 112, 338
object based programming, 9
Object Behaviour Analysis (OBA), 338
Object Management Group (OMG), 11

object-oriented
analysis and design (OOA&D), 6, 333-59
databases (OODBs), 6, 310-12
programming (OOP), 10
Object Database Management System (ODBMS), 312
ofstream, 319-20
operation, 9, 10, 338-9, 350, 353
operator (keyword), 189, 191-2, 317
operator overloading, 8, 177, 178, 180, 186-202, 313
ordered collection, 247
orthodox canonical class form, 200
ostream, 313, 317
overloading, 177, 179, 213-5
of addition operator (+), 186, 188, 194-7
of assignment operator (=), 186, 187, 190-1, 197-9
of equality operator (==), 192-3
of extraction operator (<<), 317
of function names, 177
of insertion operator (>>), 317
of istream and ostream operators, 317-8, 324
of less than operator (<), 192
of minus operator (-), 192
of method names, 215
of operators, 177
the constructor, 69, 205, 208, 209-11
overriding methods, 216

parameterised constructor, 73, 129-30
parent class, 110
part-whole, 136
parts explosion, 138, 140, 144
pass by reference, 27-8, 74, 192, 208, 317
of arrays, 37
pass by value, 27
peek (istream method), 320
persistence, 11, 77, 229, 244, 310
pointer, 37-8, 187, 246
arithmetic, 37, 44
as function parameter, 43
de-referencing, 43-4, 191
de-referencing char pointers, 44
in a linked list, 254-5, 258-9
multiple declaration, 43
to derived class object, 232-3
to dynamic array of pointers, 277
to dynamic object, 88-9, 231
to dynamic template object, 277
to integer, 37
to string, 40
polymorphism, 7, 8, 119, 177-243
ad hoc, 179, 203-5
by parameter, 180, 203-14
inclusion, 179-80
method, 181, 215-28
parametric, 179, 180, 205-8
run time, 89, 181, 229-243
semantics of, 178, 188

389

Index

universal, 179, 180
postfix notation, 26
precision (ios method), 315
prefix notation, 26
preprocessor directive, 17-34
priority queue, 249-50
private (keyword), 58, 59, 122
private derivation, 120-1
procedural paradigm, 10
propagation, 140, 145
protected (keyword), 121-2
protocol, 9
prototype theory, 335
public (keyword), 58, 59
public derivation, 120-1
pure virtual function, 237-8
put (method), 313

qualified association, 347-8
queue, 247, 249, 267-8, 270-2

recursive aggregation, see aggregation
relational database, 312

relational operator, 46

reusability, 4, 5, 11, 246, 282

role (on association), 134

round-trip gestalt, 334

Rumbaugh, James, 7, 139, 140, 333, 342, 344
run time polymorphism, see polymorphism

scenario, 337, 350
scope, 26, 79
file scope, 78
scope resolution operator (::), 58, 60, 72, 105, 107, 195,
223, 298, 300
seekg (istream method), 320-321
seekp (ostream method), 320
selection, 45~7
selector method, 567
sequence, 45
sequence diagram, 349, 351
server, 135
service, 10
set, 247, 250
set (ios method), 315
setfill (manipulator method), 316
setiosflags (manipulator method), 316
setprecision (manipulator method), 316
setw (manipulator method), 316
Shlaer & Mellor, 1
silver bullet, 4
Simula, 6-7, 14
sizeof (operator), 51
Smalltalk, 6, 7, 18, 104, 142
software crisis, 4

390

sorted collection, 247
specialisation, 110~11, 115-16, 227
stack, 108, 247, 248, 276-82
Standard Template Library (STL), 97
state diagram, 349, 352-3

static (keyword), 85, 105-6

static (early) binding, 216-7, 230-1, 235
static identifier, 181, 231

static object, 77, 79-80, 85

static type checking, 30

stddef.h, 90

stdlib.h, 90

stremp (function), 157

strepy (function), 39, 42, 164
stream, 313

string, 38, 163, 202

string literal, 39

string.h, 39, 61, 129, 163

strlen (function), 163

strnepy (function), 39, 43, 61, 129
Stroustrup, Bjarne, 15-16, 189, 287
structured methods, 3, 334
subclass, 110

superclass, 110

switch, 47

system boundaries, 336, 343

tellg (istream method), 320-1
template, 180, 211-3, 275-83
text analysis, 338-9, 343-7
this (pointer), 152, 199

tilde character (~), 87, 91
transient objects, 310
transitivity, 139

Unix, 14

Unified Modelling Language (UML), 7, 111, 123, 133,
138-9, 161-2, 333, 337, 342-53

unordered collection, 247

use case, 337, 343, 350

variable aggregation, see aggregation
vector, 247, 248

virtual (keyword), 235-6, 267, 294
virtual base class, 297-8, 302

virtual destructor, 236-7

void, 21, 27

‘while” loop, 48
width (ios method), 315
Wirfs-Brock, 334, 337

